Investigating data preprocessing methods for circuit complexity models

Preprocessing the data is an important step while creating neural network (NN) applications because this step usually has a significant effect on the prediction performance of the model. This paper compares different data processing strategies for NNs for prediction of Boolean function complexity (B...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Expert systems with applications 2009, Vol.36 (1), p.519-526
Hauptverfasser: Chandana Prasad, P.W., Beg, Azam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 526
container_issue 1
container_start_page 519
container_title Expert systems with applications
container_volume 36
creator Chandana Prasad, P.W.
Beg, Azam
description Preprocessing the data is an important step while creating neural network (NN) applications because this step usually has a significant effect on the prediction performance of the model. This paper compares different data processing strategies for NNs for prediction of Boolean function complexity (BFC). We compare NNs’ predictive capabilities with (1) no preprocessing (2) scaling the values in different curves based on every curve’s own peak and then normalizing to [0, 1] range (3) applying z-score to values in all curves and then normalizing to [0, 1] range, and (4) logarithmically scaling all curves and then normalizing to [0, 1] range. The efficiency of these methods was measured by comparing RMS errors in NN-made BFC predictions for numerous ISCAS benchmark circuits. Logarithmic preprocessing method resulted in the best prediction statistics as compared to other techniques.
doi_str_mv 10.1016/j.eswa.2007.09.052
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_35990817</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0957417407004691</els_id><sourcerecordid>35990817</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-3c36e8d47bd401edcc832544b997ecce24a83a64bf979efd4dcee3f45642faca3</originalsourceid><addsrcrecordid>eNp9kLFOwzAQhi0EEqXwAkyZ2BLs2IljiQVVFCpVYoHZcs-X4iqJg-0WeHtSlZnppNP_nf77CLlltGCU1fe7AuOXKUpKZUFVQavyjMxYI3leS8XPyYyqSuaCSXFJrmLcUcrklJ2R5Wo4YExua5Ibtpk1yWRjwDF4wBiPqx7Th7cxa33IwAXYu5SB78cOv136yXpvsYvX5KI1XcSbvzkn78unt8VLvn59Xi0e1zlwzlLOgdfYWCE3VlCGFqDhZSXERimJAFgK03BTi02rpMLWCguIvBVVLcrWgOFzcne6OxX83E_Fde8iYNeZAf0-al4pRRsmp2B5CkLwMQZs9Rhcb8KPZlQflemdPirTR2WaKj0pm6CHEzR9hAeHQUdwOABaFxCStt79h_8CVnN3eA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>35990817</pqid></control><display><type>article</type><title>Investigating data preprocessing methods for circuit complexity models</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Chandana Prasad, P.W. ; Beg, Azam</creator><creatorcontrib>Chandana Prasad, P.W. ; Beg, Azam</creatorcontrib><description>Preprocessing the data is an important step while creating neural network (NN) applications because this step usually has a significant effect on the prediction performance of the model. This paper compares different data processing strategies for NNs for prediction of Boolean function complexity (BFC). We compare NNs’ predictive capabilities with (1) no preprocessing (2) scaling the values in different curves based on every curve’s own peak and then normalizing to [0, 1] range (3) applying z-score to values in all curves and then normalizing to [0, 1] range, and (4) logarithmically scaling all curves and then normalizing to [0, 1] range. The efficiency of these methods was measured by comparing RMS errors in NN-made BFC predictions for numerous ISCAS benchmark circuits. Logarithmic preprocessing method resulted in the best prediction statistics as compared to other techniques.</description><identifier>ISSN: 0957-4174</identifier><identifier>EISSN: 1873-6793</identifier><identifier>DOI: 10.1016/j.eswa.2007.09.052</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Boolean function complexity ; Computer-aided design ; Data preprocessing ; Feed-forward neural network ; Machine learning ; Pattern recognition</subject><ispartof>Expert systems with applications, 2009, Vol.36 (1), p.519-526</ispartof><rights>2007 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-3c36e8d47bd401edcc832544b997ecce24a83a64bf979efd4dcee3f45642faca3</citedby><cites>FETCH-LOGICAL-c331t-3c36e8d47bd401edcc832544b997ecce24a83a64bf979efd4dcee3f45642faca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.eswa.2007.09.052$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,4012,27910,27911,27912,45982</link.rule.ids></links><search><creatorcontrib>Chandana Prasad, P.W.</creatorcontrib><creatorcontrib>Beg, Azam</creatorcontrib><title>Investigating data preprocessing methods for circuit complexity models</title><title>Expert systems with applications</title><description>Preprocessing the data is an important step while creating neural network (NN) applications because this step usually has a significant effect on the prediction performance of the model. This paper compares different data processing strategies for NNs for prediction of Boolean function complexity (BFC). We compare NNs’ predictive capabilities with (1) no preprocessing (2) scaling the values in different curves based on every curve’s own peak and then normalizing to [0, 1] range (3) applying z-score to values in all curves and then normalizing to [0, 1] range, and (4) logarithmically scaling all curves and then normalizing to [0, 1] range. The efficiency of these methods was measured by comparing RMS errors in NN-made BFC predictions for numerous ISCAS benchmark circuits. Logarithmic preprocessing method resulted in the best prediction statistics as compared to other techniques.</description><subject>Boolean function complexity</subject><subject>Computer-aided design</subject><subject>Data preprocessing</subject><subject>Feed-forward neural network</subject><subject>Machine learning</subject><subject>Pattern recognition</subject><issn>0957-4174</issn><issn>1873-6793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kLFOwzAQhi0EEqXwAkyZ2BLs2IljiQVVFCpVYoHZcs-X4iqJg-0WeHtSlZnppNP_nf77CLlltGCU1fe7AuOXKUpKZUFVQavyjMxYI3leS8XPyYyqSuaCSXFJrmLcUcrklJ2R5Wo4YExua5Ibtpk1yWRjwDF4wBiPqx7Th7cxa33IwAXYu5SB78cOv136yXpvsYvX5KI1XcSbvzkn78unt8VLvn59Xi0e1zlwzlLOgdfYWCE3VlCGFqDhZSXERimJAFgK03BTi02rpMLWCguIvBVVLcrWgOFzcne6OxX83E_Fde8iYNeZAf0-al4pRRsmp2B5CkLwMQZs9Rhcb8KPZlQflemdPirTR2WaKj0pm6CHEzR9hAeHQUdwOABaFxCStt79h_8CVnN3eA</recordid><startdate>2009</startdate><enddate>2009</enddate><creator>Chandana Prasad, P.W.</creator><creator>Beg, Azam</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2009</creationdate><title>Investigating data preprocessing methods for circuit complexity models</title><author>Chandana Prasad, P.W. ; Beg, Azam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-3c36e8d47bd401edcc832544b997ecce24a83a64bf979efd4dcee3f45642faca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Boolean function complexity</topic><topic>Computer-aided design</topic><topic>Data preprocessing</topic><topic>Feed-forward neural network</topic><topic>Machine learning</topic><topic>Pattern recognition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chandana Prasad, P.W.</creatorcontrib><creatorcontrib>Beg, Azam</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Expert systems with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chandana Prasad, P.W.</au><au>Beg, Azam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigating data preprocessing methods for circuit complexity models</atitle><jtitle>Expert systems with applications</jtitle><date>2009</date><risdate>2009</risdate><volume>36</volume><issue>1</issue><spage>519</spage><epage>526</epage><pages>519-526</pages><issn>0957-4174</issn><eissn>1873-6793</eissn><abstract>Preprocessing the data is an important step while creating neural network (NN) applications because this step usually has a significant effect on the prediction performance of the model. This paper compares different data processing strategies for NNs for prediction of Boolean function complexity (BFC). We compare NNs’ predictive capabilities with (1) no preprocessing (2) scaling the values in different curves based on every curve’s own peak and then normalizing to [0, 1] range (3) applying z-score to values in all curves and then normalizing to [0, 1] range, and (4) logarithmically scaling all curves and then normalizing to [0, 1] range. The efficiency of these methods was measured by comparing RMS errors in NN-made BFC predictions for numerous ISCAS benchmark circuits. Logarithmic preprocessing method resulted in the best prediction statistics as compared to other techniques.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.eswa.2007.09.052</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0957-4174
ispartof Expert systems with applications, 2009, Vol.36 (1), p.519-526
issn 0957-4174
1873-6793
language eng
recordid cdi_proquest_miscellaneous_35990817
source ScienceDirect Journals (5 years ago - present)
subjects Boolean function complexity
Computer-aided design
Data preprocessing
Feed-forward neural network
Machine learning
Pattern recognition
title Investigating data preprocessing methods for circuit complexity models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T14%3A06%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigating%20data%20preprocessing%20methods%20for%20circuit%20complexity%20models&rft.jtitle=Expert%20systems%20with%20applications&rft.au=Chandana%20Prasad,%20P.W.&rft.date=2009&rft.volume=36&rft.issue=1&rft.spage=519&rft.epage=526&rft.pages=519-526&rft.issn=0957-4174&rft.eissn=1873-6793&rft_id=info:doi/10.1016/j.eswa.2007.09.052&rft_dat=%3Cproquest_cross%3E35990817%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=35990817&rft_id=info:pmid/&rft_els_id=S0957417407004691&rfr_iscdi=true