Minimizing makespan in permutation flow shop scheduling problems using a hybrid metaheuristic algorithm

This paper proposes a hybrid metaheuristic for the minimization of makespan in permutation flow shop scheduling problems. The solution approach is robust, fast, and simply structured, and comprises three components: an initial population generation method based on a greedy randomized constructive he...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & operations research 2009-04, Vol.36 (4), p.1249-1267
Hauptverfasser: Zobolas, G.I., Tarantilis, C.D., Ioannou, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper proposes a hybrid metaheuristic for the minimization of makespan in permutation flow shop scheduling problems. The solution approach is robust, fast, and simply structured, and comprises three components: an initial population generation method based on a greedy randomized constructive heuristic, a genetic algorithm (GA) for solution evolution, and a variable neighbourhood search (VNS) to improve the population. The hybridization of a GA with VNS, combining the advantages of these two individual components, is the key innovative aspect of the approach. Computational experiments on benchmark data sets demonstrate that the proposed hybrid metaheuristic reaches high-quality solutions in short computational times. Furthermore, it requires very few user-defined parameters, rendering it applicable to real-life flow shop scheduling problems.
ISSN:0305-0548
1873-765X
0305-0548
DOI:10.1016/j.cor.2008.01.007