Hybrid composites under high strain rate compressive loading

Hybrid composites consist of two or more types of fibres and/or matrices in a composite. By combining two or more types of fibres, it is possible to club advantages of both the fibres while simultaneously mitigating their less desirable qualities. Investigations on high strain-rate behaviour of a ty...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2008-12, Vol.498 (1), p.87-99
Hauptverfasser: Naik, N.K., Ch, Veerraju, Kavala, Venkateswara Rao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hybrid composites consist of two or more types of fibres and/or matrices in a composite. By combining two or more types of fibres, it is possible to club advantages of both the fibres while simultaneously mitigating their less desirable qualities. Investigations on high strain-rate behaviour of a typical hybrid composite under compressive loading are presented. The hybrid composite is made using satin weave carbon and plain weave E-glass with epoxy resin. Studies were also carried out on satin weave carbon/epoxy and plain weave E-glass/epoxy. Compressive split Hopkinson pressure bar (SHPB) apparatus was used for the studies. Compressive properties were evaluated along all the three principal directions in the strain-rate range of 546–1503 s −1. During SHPB testing of the specimens, it was observed that the peak force obtained from the strain gauge mounted on the transmitter bar is lower than the peak force obtained from the strain gauge mounted on the incident bar. The explanation for this is provided based on stress wave attenuation studies.
ISSN:0921-5093
1873-4936
DOI:10.1016/j.msea.2007.10.124