EXISTENCE AND BIFURCATION RESULTS FOR FOURTH-ORDER ELLIPTIC EQUATIONS INVOLVING TWO CRITICAL SOBOLEV EXPONENTS
Let Ω be a smooth bounded domain in RN, with N ≥ 5. We provide existence and bifurcation results for the elliptic fourth-order equation Δ2u − Δpu = f(λ, x, u) in Ω, under the Dirichlet boundary conditions u = 0 and ∇u = 0. Here λ is a positive real number, 1 < p ≤ 2# and f(.,., u) has a subcritic...
Gespeichert in:
Veröffentlicht in: | Glasgow mathematical journal 2009-01, Vol.51 (1), p.127-141 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let Ω be a smooth bounded domain in RN, with N ≥ 5. We provide existence and bifurcation results for the elliptic fourth-order equation Δ2u − Δpu = f(λ, x, u) in Ω, under the Dirichlet boundary conditions u = 0 and ∇u = 0. Here λ is a positive real number, 1 < p ≤ 2# and f(.,., u) has a subcritical or a critical growth s, 1 < s ≤ 2*, where $2^{\ast}:=\frac{2N}{N-4}$ and $2^{\#}:=\frac{2N}{N-2}$. Our approach is variational, and it is based on the mountain-pass theorem, the Ekeland variational principle and the concentration-compactness principle. |
---|---|
ISSN: | 0017-0895 1469-509X |
DOI: | 10.1017/S0017089508004588 |