EXISTENCE AND BIFURCATION RESULTS FOR FOURTH-ORDER ELLIPTIC EQUATIONS INVOLVING TWO CRITICAL SOBOLEV EXPONENTS

Let Ω be a smooth bounded domain in RN, with N ≥ 5. We provide existence and bifurcation results for the elliptic fourth-order equation Δ2u − Δpu = f(λ, x, u) in Ω, under the Dirichlet boundary conditions u = 0 and ∇u = 0. Here λ is a positive real number, 1 < p ≤ 2# and f(.,., u) has a subcritic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Glasgow mathematical journal 2009-01, Vol.51 (1), p.127-141
Hauptverfasser: KANDILAKIS, D. A., MAGIROPOULOS, M., ZOGRAPHOPOULOS, N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let Ω be a smooth bounded domain in RN, with N ≥ 5. We provide existence and bifurcation results for the elliptic fourth-order equation Δ2u − Δpu = f(λ, x, u) in Ω, under the Dirichlet boundary conditions u = 0 and ∇u = 0. Here λ is a positive real number, 1 < p ≤ 2# and f(.,., u) has a subcritical or a critical growth s, 1 < s ≤ 2*, where $2^{\ast}:=\frac{2N}{N-4}$ and $2^{\#}:=\frac{2N}{N-2}$. Our approach is variational, and it is based on the mountain-pass theorem, the Ekeland variational principle and the concentration-compactness principle.
ISSN:0017-0895
1469-509X
DOI:10.1017/S0017089508004588