Design of magneto-rheological (MR) valve

Magneto-Rheological Fluid (“MRF”) technology has been successfully employed in various low and high volume automotive applications. Good understanding of specific design constraints is required to define and to optimize a magneto-rheological device. This article presents parametrical analyses with m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors and actuators. A. Physical. 2008-11, Vol.148 (1), p.211-223
Hauptverfasser: Grunwald, A., Olabi, A.G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 223
container_issue 1
container_start_page 211
container_title Sensors and actuators. A. Physical.
container_volume 148
creator Grunwald, A.
Olabi, A.G.
description Magneto-Rheological Fluid (“MRF”) technology has been successfully employed in various low and high volume automotive applications. Good understanding of specific design constraints is required to define and to optimize a magneto-rheological device. This article presents parametrical analyses with magnetic simulations, of a magneto-rheological valve and a magneto-rheological orifice. Experimental rig assemblies of two different control devices have been designed, built and the performances have been evaluated experimentally. Controlled pressure drops, of 0.6 MPa @ 4.5 A at 5 cm 3/s in the orifice mode, and 1.5 MPa @ 4.5 A at 0 cm 3/s, in the valve mode, using MRF132-AD, have been achieved. The study shows that excellent features like the fast response and the contactless nature of MRF control are attractive for various control devices.
doi_str_mv 10.1016/j.sna.2008.07.028
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_35747113</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0924424708004135</els_id><sourcerecordid>35747113</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-c23b820f1634b48d3fc3ae2b30559766b1d442ba34bceb49b3319e631093b623</originalsourceid><addsrcrecordid>eNp9kE1LAzEURYMoWKs_wN2spC5mfMlLJzO4kvoJFUG6D0n6pqZMJzWZFvz3TqlrV3fx7nlwD2PXHAoOvLxbF6kzhQCoClAFiOqEjXilMEco61M2glrIXAqpztlFSmsAQFRqxCaPlPyqy0KTbcyqoz7k8YtCG1bemTabvH_eZnvT7umSnTWmTXT1l2O2eH5azF7z-cfL2-xhnjtUvM-dQFsJaHiJ0spqiY1DQ8IiTKe1KkvLl1IKa4arIytri8hrKpFDjbYUOGY3x7fbGL53lHq98clR25qOwi5pnCqpOMehyI9FF0NKkRq9jX5j4o_moA9K9FoPSvRBiQalByUDc39kaBiw9xR1cp46R0sfyfV6Gfw_9C-u9Gb6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>35747113</pqid></control><display><type>article</type><title>Design of magneto-rheological (MR) valve</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Grunwald, A. ; Olabi, A.G.</creator><creatorcontrib>Grunwald, A. ; Olabi, A.G.</creatorcontrib><description>Magneto-Rheological Fluid (“MRF”) technology has been successfully employed in various low and high volume automotive applications. Good understanding of specific design constraints is required to define and to optimize a magneto-rheological device. This article presents parametrical analyses with magnetic simulations, of a magneto-rheological valve and a magneto-rheological orifice. Experimental rig assemblies of two different control devices have been designed, built and the performances have been evaluated experimentally. Controlled pressure drops, of 0.6 MPa @ 4.5 A at 5 cm 3/s in the orifice mode, and 1.5 MPa @ 4.5 A at 0 cm 3/s, in the valve mode, using MRF132-AD, have been achieved. The study shows that excellent features like the fast response and the contactless nature of MRF control are attractive for various control devices.</description><identifier>ISSN: 0924-4247</identifier><identifier>EISSN: 1873-3069</identifier><identifier>DOI: 10.1016/j.sna.2008.07.028</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>FEM ; Magneto-Rheological Fluid ; MRF-orifice ; MRF-valve</subject><ispartof>Sensors and actuators. A. Physical., 2008-11, Vol.148 (1), p.211-223</ispartof><rights>2008 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-c23b820f1634b48d3fc3ae2b30559766b1d442ba34bceb49b3319e631093b623</citedby><cites>FETCH-LOGICAL-c371t-c23b820f1634b48d3fc3ae2b30559766b1d442ba34bceb49b3319e631093b623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.sna.2008.07.028$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Grunwald, A.</creatorcontrib><creatorcontrib>Olabi, A.G.</creatorcontrib><title>Design of magneto-rheological (MR) valve</title><title>Sensors and actuators. A. Physical.</title><description>Magneto-Rheological Fluid (“MRF”) technology has been successfully employed in various low and high volume automotive applications. Good understanding of specific design constraints is required to define and to optimize a magneto-rheological device. This article presents parametrical analyses with magnetic simulations, of a magneto-rheological valve and a magneto-rheological orifice. Experimental rig assemblies of two different control devices have been designed, built and the performances have been evaluated experimentally. Controlled pressure drops, of 0.6 MPa @ 4.5 A at 5 cm 3/s in the orifice mode, and 1.5 MPa @ 4.5 A at 0 cm 3/s, in the valve mode, using MRF132-AD, have been achieved. The study shows that excellent features like the fast response and the contactless nature of MRF control are attractive for various control devices.</description><subject>FEM</subject><subject>Magneto-Rheological Fluid</subject><subject>MRF-orifice</subject><subject>MRF-valve</subject><issn>0924-4247</issn><issn>1873-3069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEURYMoWKs_wN2spC5mfMlLJzO4kvoJFUG6D0n6pqZMJzWZFvz3TqlrV3fx7nlwD2PXHAoOvLxbF6kzhQCoClAFiOqEjXilMEco61M2glrIXAqpztlFSmsAQFRqxCaPlPyqy0KTbcyqoz7k8YtCG1bemTabvH_eZnvT7umSnTWmTXT1l2O2eH5azF7z-cfL2-xhnjtUvM-dQFsJaHiJ0spqiY1DQ8IiTKe1KkvLl1IKa4arIytri8hrKpFDjbYUOGY3x7fbGL53lHq98clR25qOwi5pnCqpOMehyI9FF0NKkRq9jX5j4o_moA9K9FoPSvRBiQalByUDc39kaBiw9xR1cp46R0sfyfV6Gfw_9C-u9Gb6</recordid><startdate>20081104</startdate><enddate>20081104</enddate><creator>Grunwald, A.</creator><creator>Olabi, A.G.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20081104</creationdate><title>Design of magneto-rheological (MR) valve</title><author>Grunwald, A. ; Olabi, A.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-c23b820f1634b48d3fc3ae2b30559766b1d442ba34bceb49b3319e631093b623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>FEM</topic><topic>Magneto-Rheological Fluid</topic><topic>MRF-orifice</topic><topic>MRF-valve</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grunwald, A.</creatorcontrib><creatorcontrib>Olabi, A.G.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Sensors and actuators. A. Physical.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grunwald, A.</au><au>Olabi, A.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of magneto-rheological (MR) valve</atitle><jtitle>Sensors and actuators. A. Physical.</jtitle><date>2008-11-04</date><risdate>2008</risdate><volume>148</volume><issue>1</issue><spage>211</spage><epage>223</epage><pages>211-223</pages><issn>0924-4247</issn><eissn>1873-3069</eissn><abstract>Magneto-Rheological Fluid (“MRF”) technology has been successfully employed in various low and high volume automotive applications. Good understanding of specific design constraints is required to define and to optimize a magneto-rheological device. This article presents parametrical analyses with magnetic simulations, of a magneto-rheological valve and a magneto-rheological orifice. Experimental rig assemblies of two different control devices have been designed, built and the performances have been evaluated experimentally. Controlled pressure drops, of 0.6 MPa @ 4.5 A at 5 cm 3/s in the orifice mode, and 1.5 MPa @ 4.5 A at 0 cm 3/s, in the valve mode, using MRF132-AD, have been achieved. The study shows that excellent features like the fast response and the contactless nature of MRF control are attractive for various control devices.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.sna.2008.07.028</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0924-4247
ispartof Sensors and actuators. A. Physical., 2008-11, Vol.148 (1), p.211-223
issn 0924-4247
1873-3069
language eng
recordid cdi_proquest_miscellaneous_35747113
source Elsevier ScienceDirect Journals Complete
subjects FEM
Magneto-Rheological Fluid
MRF-orifice
MRF-valve
title Design of magneto-rheological (MR) valve
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T00%3A04%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20magneto-rheological%20(MR)%20valve&rft.jtitle=Sensors%20and%20actuators.%20A.%20Physical.&rft.au=Grunwald,%20A.&rft.date=2008-11-04&rft.volume=148&rft.issue=1&rft.spage=211&rft.epage=223&rft.pages=211-223&rft.issn=0924-4247&rft.eissn=1873-3069&rft_id=info:doi/10.1016/j.sna.2008.07.028&rft_dat=%3Cproquest_cross%3E35747113%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=35747113&rft_id=info:pmid/&rft_els_id=S0924424708004135&rfr_iscdi=true