Existence of three solutions for a class of Dirichlet quasilinear elliptic systems involving the ( p 1,…, p n ) -Laplacian
In this paper, we prove the existence of at least three weak solutions for the quasilinear elliptic systems { Δ p 1 u 1 + λ F u 1 ( x , u 1 , u 2 , … , u n ) = 0 in Ω , Δ p 2 u 2 + λ F u 2 ( x , u 1 , u 2 , … , u n ) = 0 in Ω , … Δ p n u n + λ F u n ( x , u 1 , u 2 , … , u n ) = 0 in Ω , u i = 0...
Gespeichert in:
Veröffentlicht in: | Nonlinear analysis 2009, Vol.70 (1), p.135-143 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we prove the existence of at least three weak solutions for the quasilinear elliptic systems
{
Δ
p
1
u
1
+
λ
F
u
1
(
x
,
u
1
,
u
2
,
…
,
u
n
)
=
0
in
Ω
,
Δ
p
2
u
2
+
λ
F
u
2
(
x
,
u
1
,
u
2
,
…
,
u
n
)
=
0
in
Ω
,
…
Δ
p
n
u
n
+
λ
F
u
n
(
x
,
u
1
,
u
2
,
…
,
u
n
)
=
0
in
Ω
,
u
i
=
0
for
1
≤
i
≤
n
on
∂
Ω
.
Our main tool is a recent three critical points theorem of Ricceri [B. Ricceri, On a three critical points theorem, Arch. Math. (Basel) 75 (2000) 220–226]. |
---|---|
ISSN: | 0362-546X 1873-5215 |
DOI: | 10.1016/j.na.2007.11.038 |