Trench formation and lateral damage induced by gallium milling of silicon

Molecular dynamics simulations are performed to model the nanomachining of materials via focused ion beams (FIBs). The goal of this research is to investigate the fundamental dynamics which govern the interaction of FIB with materials which are vital to the semiconductor industry, namely silicon. Sp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied surface science 2008-12, Vol.255 (4), p.828-830
Hauptverfasser: Russo, Michael F., Maazouz, Mostafa, Giannuzzi, Lucille A., Chandler, Clive, Utlaut, M., Garrison, Barbara J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Molecular dynamics simulations are performed to model the nanomachining of materials via focused ion beams (FIBs). The goal of this research is to investigate the fundamental dynamics which govern the interaction of FIB with materials which are vital to the semiconductor industry, namely silicon. Specifically, we focus on the formation of trenches/holes within the sample and the dynamics responsible for their characteristic v-shape, as well as the extent of lateral damage due to a gallium beam. These phenomena have been successfully modelled, with evidence that the lateral and subsurface damage created is much larger than the beam itself. The results presented here begin to elucidate the dynamics governing the spatial resolution of these experiments, and provide an idea of some of the technical issues associated with these beams.
ISSN:0169-4332
1873-5584
DOI:10.1016/j.apsusc.2008.05.083