The Effect of Nitridation on SiC MOS Oxides as Evaluated by Charge Pumping

We have analyzed the effect of post-oxidation nitride anneals (usually with either NO or N2O gases) on SiC MOSFETs. Two 4H:SiC wafers were identically prepared except that one wafer had a nitridation anneal after the gate oxide was formed, while the other was tested as-oxidized. We compared the two...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science forum 2009-01, Vol.600-603, p.743-746
Hauptverfasser: McGarrity, J.M., Habersat, Daniel B., Potbhare, Siddharth, Lelis, Aivars J., McLean, F. Barry
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We have analyzed the effect of post-oxidation nitride anneals (usually with either NO or N2O gases) on SiC MOSFETs. Two 4H:SiC wafers were identically prepared except that one wafer had a nitridation anneal after the gate oxide was formed, while the other was tested as-oxidized. We compared the two processes by making measurements on lateral MOSFETs and MOS capacitors using ID-VGS, C-V, and charge pumping. There was no change in either flatband voltage or interface trap density near the valence band, suggesting that the net fixed charge remained constant (within a few 1011cm-2). However, there was a large shift in the threshold voltage which, when combined with the C-V results, indicates a strong reduction of interface traps near the conduction band of roughly 6.0x1012cm-2 by using the nitridation process. The charge pumping measurements also showed a strong reduction of interface traps. Charge pumping measured a trapping density of 2.5x1012cm-2 for the as-oxidized samples and 5.3x1011cm-2 for the nitrided samples. The frequency-dependence of the charge pumping signal also indicates a spatial distribution of traps, with volumetric trap densities of roughly 1.3x1019cm-3 over 25Å on as-oxidized and 3.8x1018cm-3 over 19Å for nitrided.
ISSN:0255-5476
1662-9752
1662-9752
DOI:10.4028/www.scientific.net/MSF.600-603.743