Sign-changing and multiple solutions of Kirchhoff type problems without the P.S. condition
The existence of nontrivial solutions of Kirchhoff type equations is an important nonlocal quasilinear problem; in this paper we use minimax methods and invariant sets of descent flow to prove two interesting existence theorems for the following 4-superlinear Kirchhoff type problems without the P.S....
Gespeichert in:
Veröffentlicht in: | Nonlinear analysis 2009-02, Vol.70 (3), p.1275-1287 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The existence of nontrivial solutions of Kirchhoff type equations is an important nonlocal quasilinear problem; in this paper we use minimax methods and invariant sets of descent flow to prove two interesting existence theorems for the following 4-superlinear Kirchhoff type problems without the P.S. condition, one concerning the existence of a nontrivial solution and the other one concerning the existence of sign-changing solutions and multiple solutions,
{
−
(
a
+
b
∫
Ω
|
∇
u
|
2
)
△
u
=
f
(
x
,
u
)
in
Ω
,
u
=
0
on
∂
Ω
. |
---|---|
ISSN: | 0362-546X 1873-5215 |
DOI: | 10.1016/j.na.2008.02.011 |