Preparation of nanocrystalline Ni–Fe strip via mechanical alloying–compaction–sintering–hot rolling route

Nanocrystalline structures offer opportunity for the development of soft magnetic materials, such as 80 wt% Ni–20 wt% Fe, with superior properties. In recent years, nanocrystalline 80Ni–20Fe (wt%) alloy has been prepared by mechanical alloying of elemental powders. However, retention of nanocrystall...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2009, Vol.44 (1), p.129-135
Hauptverfasser: Vajpai, S. K., Dube, R. K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nanocrystalline structures offer opportunity for the development of soft magnetic materials, such as 80 wt% Ni–20 wt% Fe, with superior properties. In recent years, nanocrystalline 80Ni–20Fe (wt%) alloy has been prepared by mechanical alloying of elemental powders. However, retention of nanocrystallinity during consolidation of powder is the key issue to take advantage of improved magnetic properties. In the present work, it has been shown that near-full density bulk nanocrystalline 80Ni–20Fe strip can be prepared via a route consisting of mechanical alloying, cold compaction, sintering, and multi-step unsheathed hot rolling. A crack-free strip of nanocrystalline 80Ni–20Fe, having 99% theoretical density and a grain size of approximately 55 nm, was successfully prepared by sintering and hot rolling of mechanically alloyed powder preforms at 1140 °C. The bulk nanocrystalline 80Ni–20Fe material resulted in a very narrow hysteresis loop indicating a very small hysteresis loss. The present study shows that mechanical alloying–sintering–hot rolling route can be a promising method for producing bulk nanocrystalline materials.
ISSN:0022-2461
1573-4803
DOI:10.1007/s10853-008-3111-2