Performance evaluation for solar collectors in Taiwan

In this paper, the global irradiation observed in Taiwan from 1990 to 1999 was used to estimate the optimal tilt angle for solar collectors. The observed data are resolved into diffusion and beam components, and transformed into instantaneous time frames using mathematical models. The energy gain on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy (Oxford) 2009, Vol.34 (1), p.32-40
1. Verfasser: Chang, Tian Pau
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, the global irradiation observed in Taiwan from 1990 to 1999 was used to estimate the optimal tilt angle for solar collectors. The observed data are resolved into diffusion and beam components, and transformed into instantaneous time frames using mathematical models. The energy gain on installing a single-axis tracked panel as compared to a traditional fixed panel is originally analyzed theoretically. In addition to the observation data, both types of radiation will be taken into account for comparison, i.e. both extraterrestrial radiation and global radiation predicted using empirical models. The results show that the yearly optimal angles for six selected stations are about 0.95 and 0.88 times their latitudes for extraterrestrial and predicted radiation, respectively. All of the observed irradiations are less than the predicted values for all times and stations, consequently resulting in a flatter tilt angle, with a few exceptions in summer. Since Taipei has the lowest clearness index, its yearly optimal angle calculated from observed data shows the greatest discrepancy when compared to its latitude. By employing a tracked panel, the yearly gains calculated from the observed data lie between 14.3% and 25.3%, which is significantly less than those from the extraterrestrial and predicted radiations.
ISSN:0360-5442
DOI:10.1016/j.energy.2008.09.016