MOVPE growth of antimonide-containing alloy materials for long wavelength applications

GaAs-based heterostructures comprised of GaAs 1− x N x –GaAs 1− y Sb y ( x

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of crystal growth 2008-11, Vol.310 (23), p.4826-4830
Hauptverfasser: Kuech, T.F., Khandekar, A.A., Rathi, M., Mawst, L.J., Huang, J.Y.T., Song, Xueyan, Babcock, S.E., Meyer, J.R., Vurgaftman, I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4830
container_issue 23
container_start_page 4826
container_title Journal of crystal growth
container_volume 310
creator Kuech, T.F.
Khandekar, A.A.
Rathi, M.
Mawst, L.J.
Huang, J.Y.T.
Song, Xueyan
Babcock, S.E.
Meyer, J.R.
Vurgaftman, I.
description GaAs-based heterostructures comprised of GaAs 1− x N x –GaAs 1− y Sb y ( x
doi_str_mv 10.1016/j.jcrysgro.2008.09.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_35503895</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022024808008130</els_id><sourcerecordid>35503895</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-1b3de407730d841a5f0f4de79caf5b80ec106b20574e4e925fd73e1ea4b5113b3</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEuXxCygb2CWM7bhJdiDESwLBAthajjMurly72KGof4-rAls2noXPmau5hJxQqCjQ6fm8muu4TrMYKgbQVtBVANMdMqFtw0sBwHbJJL-sBFa3--QgpTlANilMyNvj09vzdZHlr_G9CKZQfrSL4O2ApQ5-VNZbPyuUc2FdLNSI0SqXChNi4UL--FIrdOhnWVbLpbNajTb4dET2TObw-Gcekteb65eru_Lh6fb-6vKh1LzhY0l7PmANTcNhaGuqhAFTD9h0WhnRt4CawrRnIJoaa-yYMEPDkaKqe0Ep7_khOdvuXcbw8YlplAubNDqnPIbPJLkQwNtOZHC6BXUMKUU0chntQsW1pCA3Ncq5_K1RbmqU0MlcYxZPfxJU0sqZqLy26c9mFBht2SbgYsthPndlMcqkLXqNg42oRzkE-1_UN1xojZs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>35503895</pqid></control><display><type>article</type><title>MOVPE growth of antimonide-containing alloy materials for long wavelength applications</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Kuech, T.F. ; Khandekar, A.A. ; Rathi, M. ; Mawst, L.J. ; Huang, J.Y.T. ; Song, Xueyan ; Babcock, S.E. ; Meyer, J.R. ; Vurgaftman, I.</creator><creatorcontrib>Kuech, T.F. ; Khandekar, A.A. ; Rathi, M. ; Mawst, L.J. ; Huang, J.Y.T. ; Song, Xueyan ; Babcock, S.E. ; Meyer, J.R. ; Vurgaftman, I.</creatorcontrib><description>GaAs-based heterostructures comprised of GaAs 1− x N x –GaAs 1− y Sb y ( x&lt;0.03, y&lt;0.35) multiple quantum wells (MQW) that utilize ‘W’-shaped type-II transitions have potential for realizing high-performance monolithic VCSELs and edge-emitting lasers with low temperature sensitivity in the 1.55 μm wavelength region. Metal-organic vapor-phase epitaxy (MOVPE) growth of GaAsSb is complicated by both thermodynamically driven phase separation and kinetic effects that arise from incomplete thermal decomposition of methyl- and hydride precursors at typical growth temperatures. The impact of growth chemistry on the formation of strained and pseudomorphic films was studied through the growth of relaxed GaAsSb films and multi-period pseudomorphic GaAsSb/GaAs superlattices. Trimethyl- and triethyl-gallium and trimethyl- and triethyl-antimony were used in a variety of combinations. The observed variations of the Sb incorporation efficiency for relaxed and strained films with growth conditions are not predicted by the existing thermodynamic models of the growth, indicating a coupling of the surface growth chemistry and the strain-induced changes in the surface stoichiometry. Through modification of the growth chemistry and process conditions, an extended range of Sb incorporation was realized as well as enhanced control over the alloy composition in strained layers. These achievements lead directly to an extended wavelength range in type-II MQW structures.</description><identifier>ISSN: 0022-0248</identifier><identifier>EISSN: 1873-5002</identifier><identifier>DOI: 10.1016/j.jcrysgro.2008.09.006</identifier><identifier>CODEN: JCRGAE</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>A1. Adsorption ; A1. Computer simulation ; A1. Desorption ; A1. Growth models ; A3. Metal-organic vapor-phase epitaxy ; B1. Antimonides ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Equations of state, phase equilibria, and phase transitions ; Exact sciences and technology ; Materials science ; Methods of crystal growth; physics of crystal growth ; Methods of deposition of films and coatings; film growth and epitaxy ; Physics ; Solid surfaces and solid-solid interfaces ; Solubility, segregation, and mixing; phase separation ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties) ; Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation ; Vapor phase epitaxy; growth from vapor phase</subject><ispartof>Journal of crystal growth, 2008-11, Vol.310 (23), p.4826-4830</ispartof><rights>2008 Elsevier B.V.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-1b3de407730d841a5f0f4de79caf5b80ec106b20574e4e925fd73e1ea4b5113b3</citedby><cites>FETCH-LOGICAL-c373t-1b3de407730d841a5f0f4de79caf5b80ec106b20574e4e925fd73e1ea4b5113b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcrysgro.2008.09.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,3550,23930,23931,25140,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21021825$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kuech, T.F.</creatorcontrib><creatorcontrib>Khandekar, A.A.</creatorcontrib><creatorcontrib>Rathi, M.</creatorcontrib><creatorcontrib>Mawst, L.J.</creatorcontrib><creatorcontrib>Huang, J.Y.T.</creatorcontrib><creatorcontrib>Song, Xueyan</creatorcontrib><creatorcontrib>Babcock, S.E.</creatorcontrib><creatorcontrib>Meyer, J.R.</creatorcontrib><creatorcontrib>Vurgaftman, I.</creatorcontrib><title>MOVPE growth of antimonide-containing alloy materials for long wavelength applications</title><title>Journal of crystal growth</title><description>GaAs-based heterostructures comprised of GaAs 1− x N x –GaAs 1− y Sb y ( x&lt;0.03, y&lt;0.35) multiple quantum wells (MQW) that utilize ‘W’-shaped type-II transitions have potential for realizing high-performance monolithic VCSELs and edge-emitting lasers with low temperature sensitivity in the 1.55 μm wavelength region. Metal-organic vapor-phase epitaxy (MOVPE) growth of GaAsSb is complicated by both thermodynamically driven phase separation and kinetic effects that arise from incomplete thermal decomposition of methyl- and hydride precursors at typical growth temperatures. The impact of growth chemistry on the formation of strained and pseudomorphic films was studied through the growth of relaxed GaAsSb films and multi-period pseudomorphic GaAsSb/GaAs superlattices. Trimethyl- and triethyl-gallium and trimethyl- and triethyl-antimony were used in a variety of combinations. The observed variations of the Sb incorporation efficiency for relaxed and strained films with growth conditions are not predicted by the existing thermodynamic models of the growth, indicating a coupling of the surface growth chemistry and the strain-induced changes in the surface stoichiometry. Through modification of the growth chemistry and process conditions, an extended range of Sb incorporation was realized as well as enhanced control over the alloy composition in strained layers. These achievements lead directly to an extended wavelength range in type-II MQW structures.</description><subject>A1. Adsorption</subject><subject>A1. Computer simulation</subject><subject>A1. Desorption</subject><subject>A1. Growth models</subject><subject>A3. Metal-organic vapor-phase epitaxy</subject><subject>B1. Antimonides</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Equations of state, phase equilibria, and phase transitions</subject><subject>Exact sciences and technology</subject><subject>Materials science</subject><subject>Methods of crystal growth; physics of crystal growth</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Physics</subject><subject>Solid surfaces and solid-solid interfaces</subject><subject>Solubility, segregation, and mixing; phase separation</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><subject>Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation</subject><subject>Vapor phase epitaxy; growth from vapor phase</subject><issn>0022-0248</issn><issn>1873-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EEuXxCygb2CWM7bhJdiDESwLBAthajjMurly72KGof4-rAls2noXPmau5hJxQqCjQ6fm8muu4TrMYKgbQVtBVANMdMqFtw0sBwHbJJL-sBFa3--QgpTlANilMyNvj09vzdZHlr_G9CKZQfrSL4O2ApQ5-VNZbPyuUc2FdLNSI0SqXChNi4UL--FIrdOhnWVbLpbNajTb4dET2TObw-Gcekteb65eru_Lh6fb-6vKh1LzhY0l7PmANTcNhaGuqhAFTD9h0WhnRt4CawrRnIJoaa-yYMEPDkaKqe0Ep7_khOdvuXcbw8YlplAubNDqnPIbPJLkQwNtOZHC6BXUMKUU0chntQsW1pCA3Ncq5_K1RbmqU0MlcYxZPfxJU0sqZqLy26c9mFBht2SbgYsthPndlMcqkLXqNg42oRzkE-1_UN1xojZs</recordid><startdate>20081115</startdate><enddate>20081115</enddate><creator>Kuech, T.F.</creator><creator>Khandekar, A.A.</creator><creator>Rathi, M.</creator><creator>Mawst, L.J.</creator><creator>Huang, J.Y.T.</creator><creator>Song, Xueyan</creator><creator>Babcock, S.E.</creator><creator>Meyer, J.R.</creator><creator>Vurgaftman, I.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20081115</creationdate><title>MOVPE growth of antimonide-containing alloy materials for long wavelength applications</title><author>Kuech, T.F. ; Khandekar, A.A. ; Rathi, M. ; Mawst, L.J. ; Huang, J.Y.T. ; Song, Xueyan ; Babcock, S.E. ; Meyer, J.R. ; Vurgaftman, I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-1b3de407730d841a5f0f4de79caf5b80ec106b20574e4e925fd73e1ea4b5113b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>A1. Adsorption</topic><topic>A1. Computer simulation</topic><topic>A1. Desorption</topic><topic>A1. Growth models</topic><topic>A3. Metal-organic vapor-phase epitaxy</topic><topic>B1. Antimonides</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Equations of state, phase equilibria, and phase transitions</topic><topic>Exact sciences and technology</topic><topic>Materials science</topic><topic>Methods of crystal growth; physics of crystal growth</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Physics</topic><topic>Solid surfaces and solid-solid interfaces</topic><topic>Solubility, segregation, and mixing; phase separation</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><topic>Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation</topic><topic>Vapor phase epitaxy; growth from vapor phase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuech, T.F.</creatorcontrib><creatorcontrib>Khandekar, A.A.</creatorcontrib><creatorcontrib>Rathi, M.</creatorcontrib><creatorcontrib>Mawst, L.J.</creatorcontrib><creatorcontrib>Huang, J.Y.T.</creatorcontrib><creatorcontrib>Song, Xueyan</creatorcontrib><creatorcontrib>Babcock, S.E.</creatorcontrib><creatorcontrib>Meyer, J.R.</creatorcontrib><creatorcontrib>Vurgaftman, I.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of crystal growth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuech, T.F.</au><au>Khandekar, A.A.</au><au>Rathi, M.</au><au>Mawst, L.J.</au><au>Huang, J.Y.T.</au><au>Song, Xueyan</au><au>Babcock, S.E.</au><au>Meyer, J.R.</au><au>Vurgaftman, I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MOVPE growth of antimonide-containing alloy materials for long wavelength applications</atitle><jtitle>Journal of crystal growth</jtitle><date>2008-11-15</date><risdate>2008</risdate><volume>310</volume><issue>23</issue><spage>4826</spage><epage>4830</epage><pages>4826-4830</pages><issn>0022-0248</issn><eissn>1873-5002</eissn><coden>JCRGAE</coden><abstract>GaAs-based heterostructures comprised of GaAs 1− x N x –GaAs 1− y Sb y ( x&lt;0.03, y&lt;0.35) multiple quantum wells (MQW) that utilize ‘W’-shaped type-II transitions have potential for realizing high-performance monolithic VCSELs and edge-emitting lasers with low temperature sensitivity in the 1.55 μm wavelength region. Metal-organic vapor-phase epitaxy (MOVPE) growth of GaAsSb is complicated by both thermodynamically driven phase separation and kinetic effects that arise from incomplete thermal decomposition of methyl- and hydride precursors at typical growth temperatures. The impact of growth chemistry on the formation of strained and pseudomorphic films was studied through the growth of relaxed GaAsSb films and multi-period pseudomorphic GaAsSb/GaAs superlattices. Trimethyl- and triethyl-gallium and trimethyl- and triethyl-antimony were used in a variety of combinations. The observed variations of the Sb incorporation efficiency for relaxed and strained films with growth conditions are not predicted by the existing thermodynamic models of the growth, indicating a coupling of the surface growth chemistry and the strain-induced changes in the surface stoichiometry. Through modification of the growth chemistry and process conditions, an extended range of Sb incorporation was realized as well as enhanced control over the alloy composition in strained layers. These achievements lead directly to an extended wavelength range in type-II MQW structures.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jcrysgro.2008.09.006</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-0248
ispartof Journal of crystal growth, 2008-11, Vol.310 (23), p.4826-4830
issn 0022-0248
1873-5002
language eng
recordid cdi_proquest_miscellaneous_35503895
source ScienceDirect Journals (5 years ago - present)
subjects A1. Adsorption
A1. Computer simulation
A1. Desorption
A1. Growth models
A3. Metal-organic vapor-phase epitaxy
B1. Antimonides
Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science
rheology
Equations of state, phase equilibria, and phase transitions
Exact sciences and technology
Materials science
Methods of crystal growth
physics of crystal growth
Methods of deposition of films and coatings
film growth and epitaxy
Physics
Solid surfaces and solid-solid interfaces
Solubility, segregation, and mixing
phase separation
Surfaces and interfaces
thin films and whiskers (structure and nonelectronic properties)
Theory and models of crystal growth
physics of crystal growth, crystal morphology and orientation
Vapor phase epitaxy
growth from vapor phase
title MOVPE growth of antimonide-containing alloy materials for long wavelength applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T16%3A55%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MOVPE%20growth%20of%20antimonide-containing%20alloy%20materials%20for%20long%20wavelength%20applications&rft.jtitle=Journal%20of%20crystal%20growth&rft.au=Kuech,%20T.F.&rft.date=2008-11-15&rft.volume=310&rft.issue=23&rft.spage=4826&rft.epage=4830&rft.pages=4826-4830&rft.issn=0022-0248&rft.eissn=1873-5002&rft.coden=JCRGAE&rft_id=info:doi/10.1016/j.jcrysgro.2008.09.006&rft_dat=%3Cproquest_cross%3E35503895%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=35503895&rft_id=info:pmid/&rft_els_id=S0022024808008130&rfr_iscdi=true