Meromorphic solutions of higher order Briot–Bouquet differential equations

For differential equations P(y(k), y)=0, where P is a polynomial, we prove that all meromorphic solutions having at least one pole are elliptic functions, possibly degenerate.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical proceedings of the Cambridge Philosophical Society 2009-01, Vol.146 (1), p.197-206
Hauptverfasser: EREMENKO, ALEXANDRE E, LIAO, LIANGWEN, NG, TUEN WAI
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 206
container_issue 1
container_start_page 197
container_title Mathematical proceedings of the Cambridge Philosophical Society
container_volume 146
creator EREMENKO, ALEXANDRE E
LIAO, LIANGWEN
NG, TUEN WAI
description For differential equations P(y(k), y)=0, where P is a polynomial, we prove that all meromorphic solutions having at least one pole are elliptic functions, possibly degenerate.
doi_str_mv 10.1017/S030500410800176X
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_35483247</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S030500410800176X</cupid><sourcerecordid>1880666431</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-df63c7fc47d25fdb0137be37524d177d4fe0593d4c3d1387b437203e3fcc2fb23</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqXwAewiFuwC49iJmyUg3kWIl-jOSvxoDUnc2okEO_6BP-RLcGkFEoiNR9acO3PnIrSNYQ8DZvt3QCAFoBgGEP7ZaAX1MM3yeAAZXUW9eTue99fRhvdPAEByDD00vFLO1tZNJ0ZE3lZda2zjI6ujiRlPlIusk-E9dMa2H2_vh7abdaqNpNFaOdW0pqgiNeuKL9kmWtNF5dXWsvbRw8nx_dFZPLw-PT86GMaC4LSNpc6IYFpQJpNUyxIwYaUiLE2oxIxJqhWkOZFUEInJgJWUsASIIlqIRJcJ6aPdxdyps8GOb3ltvFBVVTTKdp6TlA5IQlkAd36BT7ZzTfDGkyRkkLI8DxBeQMJZ753SfOpMXbhXjoHPw-V_wg2aeKExvlUv34LCPfOMhUt4dnrDby_T0cXNGeaPgSfLHUVdOiPH6sfJ_1s-Ab3SjCA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>220005799</pqid></control><display><type>article</type><title>Meromorphic solutions of higher order Briot–Bouquet differential equations</title><source>Cambridge Journals - CAUL Collection</source><creator>EREMENKO, ALEXANDRE E ; LIAO, LIANGWEN ; NG, TUEN WAI</creator><creatorcontrib>EREMENKO, ALEXANDRE E ; LIAO, LIANGWEN ; NG, TUEN WAI</creatorcontrib><description>For differential equations P(y(k), y)=0, where P is a polynomial, we prove that all meromorphic solutions having at least one pole are elliptic functions, possibly degenerate.</description><identifier>ISSN: 0305-0041</identifier><identifier>EISSN: 1469-8064</identifier><identifier>DOI: 10.1017/S030500410800176X</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Differential equations ; Mathematics ; Polynomials</subject><ispartof>Mathematical proceedings of the Cambridge Philosophical Society, 2009-01, Vol.146 (1), p.197-206</ispartof><rights>Copyright © Cambridge Philosophical Society 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c315t-df63c7fc47d25fdb0137be37524d177d4fe0593d4c3d1387b437203e3fcc2fb23</citedby><cites>FETCH-LOGICAL-c315t-df63c7fc47d25fdb0137be37524d177d4fe0593d4c3d1387b437203e3fcc2fb23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S030500410800176X/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,778,782,4012,27910,27911,27912,55615</link.rule.ids></links><search><creatorcontrib>EREMENKO, ALEXANDRE E</creatorcontrib><creatorcontrib>LIAO, LIANGWEN</creatorcontrib><creatorcontrib>NG, TUEN WAI</creatorcontrib><title>Meromorphic solutions of higher order Briot–Bouquet differential equations</title><title>Mathematical proceedings of the Cambridge Philosophical Society</title><addtitle>Math. Proc. Camb. Phil. Soc</addtitle><description>For differential equations P(y(k), y)=0, where P is a polynomial, we prove that all meromorphic solutions having at least one pole are elliptic functions, possibly degenerate.</description><subject>Differential equations</subject><subject>Mathematics</subject><subject>Polynomials</subject><issn>0305-0041</issn><issn>1469-8064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kMtOwzAQRS0EEqXwAewiFuwC49iJmyUg3kWIl-jOSvxoDUnc2okEO_6BP-RLcGkFEoiNR9acO3PnIrSNYQ8DZvt3QCAFoBgGEP7ZaAX1MM3yeAAZXUW9eTue99fRhvdPAEByDD00vFLO1tZNJ0ZE3lZda2zjI6ujiRlPlIusk-E9dMa2H2_vh7abdaqNpNFaOdW0pqgiNeuKL9kmWtNF5dXWsvbRw8nx_dFZPLw-PT86GMaC4LSNpc6IYFpQJpNUyxIwYaUiLE2oxIxJqhWkOZFUEInJgJWUsASIIlqIRJcJ6aPdxdyps8GOb3ltvFBVVTTKdp6TlA5IQlkAd36BT7ZzTfDGkyRkkLI8DxBeQMJZ753SfOpMXbhXjoHPw-V_wg2aeKExvlUv34LCPfOMhUt4dnrDby_T0cXNGeaPgSfLHUVdOiPH6sfJ_1s-Ab3SjCA</recordid><startdate>200901</startdate><enddate>200901</enddate><creator>EREMENKO, ALEXANDRE E</creator><creator>LIAO, LIANGWEN</creator><creator>NG, TUEN WAI</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>200901</creationdate><title>Meromorphic solutions of higher order Briot–Bouquet differential equations</title><author>EREMENKO, ALEXANDRE E ; LIAO, LIANGWEN ; NG, TUEN WAI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-df63c7fc47d25fdb0137be37524d177d4fe0593d4c3d1387b437203e3fcc2fb23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Differential equations</topic><topic>Mathematics</topic><topic>Polynomials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>EREMENKO, ALEXANDRE E</creatorcontrib><creatorcontrib>LIAO, LIANGWEN</creatorcontrib><creatorcontrib>NG, TUEN WAI</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Mathematical proceedings of the Cambridge Philosophical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>EREMENKO, ALEXANDRE E</au><au>LIAO, LIANGWEN</au><au>NG, TUEN WAI</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Meromorphic solutions of higher order Briot–Bouquet differential equations</atitle><jtitle>Mathematical proceedings of the Cambridge Philosophical Society</jtitle><addtitle>Math. Proc. Camb. Phil. Soc</addtitle><date>2009-01</date><risdate>2009</risdate><volume>146</volume><issue>1</issue><spage>197</spage><epage>206</epage><pages>197-206</pages><issn>0305-0041</issn><eissn>1469-8064</eissn><abstract>For differential equations P(y(k), y)=0, where P is a polynomial, we prove that all meromorphic solutions having at least one pole are elliptic functions, possibly degenerate.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S030500410800176X</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0305-0041
ispartof Mathematical proceedings of the Cambridge Philosophical Society, 2009-01, Vol.146 (1), p.197-206
issn 0305-0041
1469-8064
language eng
recordid cdi_proquest_miscellaneous_35483247
source Cambridge Journals - CAUL Collection
subjects Differential equations
Mathematics
Polynomials
title Meromorphic solutions of higher order Briot–Bouquet differential equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T14%3A12%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Meromorphic%20solutions%20of%20higher%20order%20Briot%E2%80%93Bouquet%20differential%20equations&rft.jtitle=Mathematical%20proceedings%20of%20the%20Cambridge%20Philosophical%20Society&rft.au=EREMENKO,%20ALEXANDRE%20E&rft.date=2009-01&rft.volume=146&rft.issue=1&rft.spage=197&rft.epage=206&rft.pages=197-206&rft.issn=0305-0041&rft.eissn=1469-8064&rft_id=info:doi/10.1017/S030500410800176X&rft_dat=%3Cproquest_cross%3E1880666431%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=220005799&rft_id=info:pmid/&rft_cupid=10_1017_S030500410800176X&rfr_iscdi=true