Ultrafine grain formation in face centered cubic metals during severe plastic deformation
The evolution mechanisms of new high-angle boundaries as well as ultrafine grains at large strains were studied by means of multidirectional forging (MDF) of pure copper at low temperature and aluminum alloy at high temperature, where dynamic recovery operates as a main restoration process. The stru...
Gespeichert in:
Veröffentlicht in: | Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2009-01, Vol.499 (1), p.2-6 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The evolution mechanisms of new high-angle boundaries as well as ultrafine grains at large strains were studied by means of multidirectional forging (MDF) of pure copper at low temperature and aluminum alloy at high temperature, where dynamic recovery operates as a main restoration process. The structural changes can be characterized by the evolution of deformation bands such as microshear or kink bands at moderate strains. Multidirectional forging accelerates the evolution of many mutually crossing microshear or kink bands developed in various directions. The misorientations between (sub)grains increased gradually with increasing cumulative strain, finally leading to the development of a new fine-grained structure. The dynamic grain formation can be resulted from in situ or continuous dynamic recrystallization which is discussed in detail. |
---|---|
ISSN: | 0921-5093 1873-4936 |
DOI: | 10.1016/j.msea.2007.11.098 |