Electricity Generation Using Membrane-less Microbial Fuel Cell during Wastewater Treatment

An upflow mode membrane-less microbial fuel cell (ML-MFC) was designed for wastewater treatment. Granular graphite electrodes, which are flexible in size, were adopted in the ML-MFC. Microbes present in anaerobic activated sludge were used as the biocatalyst and artificial wastewater was tested as s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese journal of chemical engineering 2008-10, Vol.16 (5), p.772-777
1. Verfasser: 杜竹玮 李清海 佟萌 李少华 李浩然
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An upflow mode membrane-less microbial fuel cell (ML-MFC) was designed for wastewater treatment. Granular graphite electrodes, which are flexible in size, were adopted in the ML-MFC. Microbes present in anaerobic activated sludge were used as the biocatalyst and artificial wastewater was tested as substrate. During the electrochemically active microbe enrichment stage, a stable power output of 536 mW.m-3 with reference to the anode volume was generated by the ML-MFC running in batch mode. The voltage output decreased from 203 mV to about 190 mV after the ML-MFC was changed from batch mode to normally continuous mode, indicating that planktonic electrochemically active bacterial strains in the ML-MFC may be carried away along with the effluent. Cyclic voltammograms showed that the attached microbes possessed higher bioelectrochemical activity than the planktonic microbes. Forced aeration to the cathode benefited the electricity generation obviously. Higher feeding rate and longer electrode distance both increased the electricity generation. The coulombic yield was not more than 20% throughout the study, which is lower than that of MFCs with membrane. It is proposed that dissolved oxygen diffused from the cathode to the anode may consume part of the substrate.
ISSN:1004-9541
2210-321X
DOI:10.1016/S1004-9541(08)60154-8