Determining the influence of cutting fluids on tool wear and surface roughness during turning of AISI 304 austenitic stainless steel

Knowledge of the performance of cutting fluids in machining different work materials is of critical importance in order to improve the efficiency of any machining process. The efficiency can be evaluated based on certain process parameters such as flank wear, surface roughness on the work piece, cut...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials processing technology 2009-01, Vol.209 (2), p.900-909
Hauptverfasser: Xavior, M. Anthony, Adithan, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Knowledge of the performance of cutting fluids in machining different work materials is of critical importance in order to improve the efficiency of any machining process. The efficiency can be evaluated based on certain process parameters such as flank wear, surface roughness on the work piece, cutting forces developed, temperature developed at the tool chip interface, etc. The objective of this work is to determine the influence of cutting fluids on tool wear and surface roughness during turning of AISI 304 with carbide tool. Further an attempt has been made to identify the influence of coconut oil in reducing the tool wear and surface roughness during turning process. The performance of coconut oil is also being compared with another two cutting fluids namely an emulsion and a neat cutting oil (immiscible with water). The results indicated that in general, coconut oil performed better than the other two cutting fluids in reducing the tool wear and improving the surface finish. Coconut oil has been used as one of the cutting fluids in this work because of its thermal and oxidative stability which is being comparable to other vegetable-based cutting fluids used in the metal cutting industry.
ISSN:0924-0136
DOI:10.1016/j.jmatprotec.2008.02.068