Determination of critical thickness for defect formation of CdSe/ZnSe heterostructures by transmission electron microscopy and photoluminescence spectroscopy

We report on the investigation of CdSe/ZnSe heterostructures by transmission electron microscopy (TEM) and photoluminescence spectroscopy (PL). CdSe layers with nominal thicknesses tCdSe between 0.5 and 8 monolayers (ML) were embedded in a ZnSe matrix and grown on a GaAs(001) substrate by molecular‐...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica status solidi. A, Applications and materials science Applications and materials science, 2008-12, Vol.205 (12), p.2892-2897
Hauptverfasser: Litvinov, D., Schowalter, M., Rosenauer, A., Daniel, B., Fallert, J., Löffler, W., Kalt, H., Hetterich, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We report on the investigation of CdSe/ZnSe heterostructures by transmission electron microscopy (TEM) and photoluminescence spectroscopy (PL). CdSe layers with nominal thicknesses tCdSe between 0.5 and 8 monolayers (ML) were embedded in a ZnSe matrix and grown on a GaAs(001) substrate by molecular‐beam epitaxy at 280 °C. The Cd‐distribution was obtained from high‐resolution TEM lattice fringe images using composition evaluation by lattice fringe analysis technique. The measured minimum, average and maximum Cd‐concentrations and the overall CdSe contents in the layers increase with the nominal CdSe layer thickness and reach a constant value at tCdSe = 4 ML. The measured CdSe content in the regions with the maximal Cd‐concentration continues to increase for tCdSe ≥ 5 ML. The increasing of measured Cd‐concentrations/CdSe contents is correlated with a red shift of PL spectra. In the CdSe layers with tCdSe ≥ 5 ML, formation of defects is observed. The increasing density of defects and decreasing intensity of PL spectra with tCdSe suggest that the critical thickness for defect formation during CdSe growth on the ZnSe(001) is between 4 ML and 5 ML. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
ISSN:1862-6300
0031-8965
1862-6319
DOI:10.1002/pssa.200824151