A comparison of ballistic limit with adaptive-mesh Eulerian hydrocode predictions of one- and two-plate aluminum shielding protection against millimeter-sized Fe–Ni space debris

Hypervelocity collisions with space debris (SD, natural meteoroids and man-made artifacts) can significantly affect the performance of spacecraft. Here, I compare (1) the predictions of the Cour-Palais/Christiansen (C-P/C) ballistic limit equations (BLEs) spacecraft shield models with (2) the predic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of impact engineering 2008-12, Vol.35 (12), p.1602-1605
1. Verfasser: Horner, J.K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hypervelocity collisions with space debris (SD, natural meteoroids and man-made artifacts) can significantly affect the performance of spacecraft. Here, I compare (1) the predictions of the Cour-Palais/Christiansen (C-P/C) ballistic limit equations (BLEs) spacecraft shield models with (2) the predictions of the response of those shields generated by an adaptive-mesh Eulerian hydrodynamic code, incorporating Mie-Grüneisen solid mechanics and a simple material-failure model, running on a modern PC, for hypervelocity collisions with millimeter-sized iron–nickel (Fe–Ni) spheres. The results show that the shield thicknesses predicted by the C-P/C BLEs are consistent with the adequacy of the shield response predicted by the hydrodynamic modeling. Although several hydrocodes have been used to validate the C-P/C BLEs, validating them with an (inherently computing resource-efficient) adaptive-mesh Eulerian hydrodynamic code for this impact regime appears to be novel.
ISSN:0734-743X
1879-3509
DOI:10.1016/j.ijimpeng.2008.07.039