Large format voltage tunable dual-band QWIP FPAs

Third generation thermal imagers with dual/multi-band operation capability are the prominent focus of the current research in the field of infrared detection. Dual band quantum-well infrared photodetector (QWIP) focal plane arrays (FPAs) based on various detection and fabrication approaches have bee...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Infrared physics & technology 2009-11, Vol.52 (6), p.399-402
Hauptverfasser: Arslan, Y., Eker, S.U., Kaldirim, M., Besikci, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Third generation thermal imagers with dual/multi-band operation capability are the prominent focus of the current research in the field of infrared detection. Dual band quantum-well infrared photodetector (QWIP) focal plane arrays (FPAs) based on various detection and fabrication approaches have been reported. One of these approaches is the three-contact design allowing simultaneous integration of the signals in both bands. However, this approach requires three In bumps on each pixel leading to a complicated fabrication process and lower fill factor. If the spectral response of a two-stack QWIP structure can effectively be shifted between two spectral bands with the applied bias, dual band sensors can be implemented with the conventional FPA fabrication process requiring only one In bump on each pixel making it possible to fabricate large format dual band FPAs at the cost and yield of single band detectors. While some disadvantages of this technique have been discussed in the literature, the detailed assessment of this approach has not been performed at the FPA level yet. We report the characteristics of a large format (640 × 512) voltage tunable dual-band QWIP FPA constructed through series connection of MWIR AlGaAs–InGaAs and LWIR AlGaAs–GaAs multi-quantum well stacks, and provide a detailed assessment of the potential of this approach at both pixel and FPA levels. The dual band FPA having MWIR and LWIR cut-off wavelengths of 5.1 and 8.9 μm provided noise equivalent temperature differences as low as 14 and 31 mK ( f/1.5) with switching voltages within the limits applicable by commercial read-out integrated circuits. The results demonstrate the promise of the approach for achieving large format low cost dual band FPAs.
ISSN:1350-4495
1879-0275
DOI:10.1016/j.infrared.2009.06.005