Tungsten and nitrogen co-doped TiO2 nano-powders with strong visible light response
A two-step method, combining with sol–gel and mechanical alloying (MA) method, was used to fabricate the tungsten and nitrogen co-doped TiO2 nano-powders ((W, N) co-doped TiO2 NPs). The (W, N) co-doped TiO2 NPs showed strong absorbance in visible range, as long as 650nm. Enhanced photocatalytic acti...
Gespeichert in:
Veröffentlicht in: | Applied catalysis. B, Environmental Environmental, 2008-09, Vol.83 (3-4), p.177-185 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A two-step method, combining with sol–gel and mechanical alloying (MA) method, was used to fabricate the tungsten and nitrogen co-doped TiO2 nano-powders ((W, N) co-doped TiO2 NPs). The (W, N) co-doped TiO2 NPs showed strong absorbance in visible range, as long as 650nm. Enhanced photocatalytic activities under visible light irradiation were also observed from the results of photodegradation experiments and chemical oxygen demand (COD) analysis. Physical, chemical, and optical properties of the samples were investigated. Possible reasons for the enhanced photocatalytic activities were analyzed based on the experimental results. Oxygen vacancies detected by electron spin response (ESR) spectra, acting as trapping agencies for electrons (e−) to produce active oxygen species (O2−), were proved to be the main cause for the improved photocatalytic performances. |
---|---|
ISSN: | 0926-3373 1873-3883 |
DOI: | 10.1016/j.apcatb.2008.01.037 |