Structural and mechanical study of the sintering effect in hydroxyapatite doped with iron oxide

Calcium phosphates are very important for applications in medicine due to their properties such as biocompatibility and bioactivity. In order to improve their properties, substitution of calcium with other ions has been proposed. Partial substitution of calcium by different ions has been made as a w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica. B, Condensed matter Condensed matter, 2008-10, Vol.403 (19), p.3826-3829
Hauptverfasser: Filho, F.P., Nogueira, R.E.F.Q., Graça, M.P.F., Valente, M.A., Sombra, A.S.B., Silva, C.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Calcium phosphates are very important for applications in medicine due to their properties such as biocompatibility and bioactivity. In order to improve their properties, substitution of calcium with other ions has been proposed. Partial substitution of calcium by different ions has been made as a way to improve the properties of the calcium phosphates and also to allow new applications of apatites in medicine. In this work, hydroxyapatite [Ca 10(PO 4) 6(OH) 2—HAP], prepared by high-energy dry milling (20 h), was mixed with different amounts of iron oxide (0.5, 1, 2.5 and 5 wt%). The mixtures were calcinated at 900 °C for 5 h with a heating rate of 3 °C/min in an attempt to introduce the iron oxide in the HAP structure. Small discs (12.5 mm ∅) were uniaxially pressed under a load of 2 t for 2 min. The pellets were sintered at 1000, 1200 and 1300 °C for 5 h in air. The main purpose of this work is to study why the iron oxide concentration and the heat treatment of the samples change the microhardness of the obtained ceramics. The sintered samples were characterized by X-ray diffraction (XRD), Vickers Microhardness and scanning electron microscopy (SEM).
ISSN:0921-4526
1873-2135
DOI:10.1016/j.physb.2008.07.017