Spinel Li4Ti5O12 as a reversible anode material down to 0 V
The electrochemical behavior of Li1.33Ti1.67O4 was investigated as an anode material discharged to 0 V using X-ray diffraction (XRD), galvanostatic cell cycling and ac impedance spectroscopy. The XRD results indicate that the lattice framework of Li1.33Ti1.67O4 is almost unchanged even after it is d...
Gespeichert in:
Veröffentlicht in: | Journal of alloys and compounds 2008-10, Vol.465 (1-2), p.375-379 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The electrochemical behavior of Li1.33Ti1.67O4 was investigated as an anode material discharged to 0 V using X-ray diffraction (XRD), galvanostatic cell cycling and ac impedance spectroscopy. The XRD results indicate that the lattice framework of Li1.33Ti1.67O4 is almost unchanged even after it is discharged to 0 V. The Li1.33Ti1.67O4 electrode can be cycled in the voltage range between 0 and 3.0 V with excellent cyclability and a capacity of about 200 mAh/g. During the discharge process, a 0.75 V plateau is also observed in addition to the usual 1.5 V plateau. The capacity associated with the 0.75 V plateau varies with current density and temperature. The possible cause of this low potential plateau is discussed and attributed to a carbon-triggered-capacity (CTC) effect. |
---|---|
ISSN: | 0925-8388 1873-4669 |
DOI: | 10.1016/j.jallcom.2007.10.113 |