Surface modification of active metals through atom transfer radical polymerization grafting of acrylics
The objective of this work is to investigate the fundamentals of surface-initiated atom transfer radical polymerization (s-ATRP) on metal substrates. Acrylic polymers were grafted from active metal surfaces such as cold rolled steel (CRS), stainless steel (SS) and nickel (Ni) through s-ATRP. Severe...
Gespeichert in:
Veröffentlicht in: | Applied surface science 2008-08, Vol.254 (21), p.6802-6809 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The objective of this work is to investigate the fundamentals of surface-initiated atom transfer radical polymerization (s-ATRP) on metal substrates. Acrylic polymers were grafted from active metal surfaces such as cold rolled steel (CRS), stainless steel (SS) and nickel (Ni) through s-ATRP. Severe deactivation was found with copper bromide bipyridine catalyst. Controlled polymerization with relatively low polydispersities, 1.18–1.35, was achieved using iron bromide triphenylphosphine catalyst. Polymer films up to 80
nm in thickness were obtained within 80
min. Grafting densities were estimated to be 0.58
chains/nm
2 for CRS-g-PMMA, 0.55
chains/nm
2 for Ni-g-PMMA, 0.18
chains/nm
2 for SS-g-PMMA, and 0.66
chains/nm
2 for SS-g-PDMAEMA. Electrochemical experiments were also carried out to measure the polarization resistance and corrosion potential of CRS-g-PMMA substrates. Metal surfaces with grafted brush polymer coatings showed significant corrosion resistance. This work demonstrated that the surface-initiated ATRP is a versatile means for the surface modification of active metals with well-defined and functionalized polymer brushes. |
---|---|
ISSN: | 0169-4332 1873-5584 |
DOI: | 10.1016/j.apsusc.2008.04.101 |