A Frank-Wolfe Type Theorem for Convex Polynomial Programs
In 1956, Frank and Wolfe extended the fundamental existence theorem of linear programming by proving that an arbitrary quadratic function f attains its minimum over a nonempty convex polyhedral set X provided f is bounded from below over X. We show that a similar statement holds if f is a convex pol...
Gespeichert in:
Veröffentlicht in: | Computational optimization and applications 2002-04, Vol.22 (1), p.37-48 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In 1956, Frank and Wolfe extended the fundamental existence theorem of linear programming by proving that an arbitrary quadratic function f attains its minimum over a nonempty convex polyhedral set X provided f is bounded from below over X. We show that a similar statement holds if f is a convex polynomial and X is the solution set of a system of convex polynomial inequalities. In fact, this result was published by the first author already in a 1977 book, but seems to have been unnoticed until now. Further, we discuss the behavior of convex polynomial sets under linear transformations and derive some consequences of the Frank-Wolfe type theorem for perturbed problems. [PUBLICATION ABSTRACT] |
---|---|
ISSN: | 0926-6003 1573-2894 |
DOI: | 10.1023/A:1014813701864 |