Effects of Pressure on Collision, Coalescence, and Breakup of Raindrops. Part II: Parameterization and Spectra Evolution at 50 and 100 kPa

Fragment size distributions, experimentally obtained for six drop pairs colliding at 50 kPa, are parameterized similarly to the 100-kPa drop pair experiments by Low and List. This information is then introduced into a box model to allow assessment of the spectra evolution and a comparison of the two...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the atmospheric sciences 2009-08, Vol.66 (8), p.2204-2215
Hauptverfasser: LIST, Roland, NISSEN, R, FUNG, C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fragment size distributions, experimentally obtained for six drop pairs colliding at 50 kPa, are parameterized similarly to the 100-kPa drop pair experiments by Low and List. This information is then introduced into a box model to allow assessment of the spectra evolution and a comparison of the two datasets taken at the two pressures. The differences in breakup patterns include the following: The contributions to mass transfer by breakup and coalescence are very similar at the two pressures, with larger values at lower pressure; the overall mass evolution is not particularly sensitive to pressure; and disk breakup plays an “erratic” role. The situation for the number concentration, however, is totally different and develops gradually. At 50 kPa there is also no three-peak equilibrium developing as for 100 kPa. The times to reach equilibrium are ∼12 h. Note that the box model does not include accretion of cloud droplets—which may well be more important than growth by accretion of fragments. Application of the new parameterization is not beneficial for low rain rates, but it is strongly recommended for large rain rates (>50 mm h−1).
ISSN:0022-4928
1520-0469
DOI:10.1175/2009JAS2875.1