Advanced hybrid neural network automotive friction component model for powertrain system dynamic analysis. Part 2: System simulation

Abstract In this research, the advanced hybrid neural network (AHNN) friction-component model, presented in Part 1 of this two-part paper, is integrated with an automotive drivetrain model for system simulations. The AHNN model accurately predicts the dynamic behaviours of transmission friction comp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Institution of Mechanical Engineers. Part D, Journal of automobile engineering Journal of automobile engineering, 2004-08, Vol.218 (8), p.845-857
Hauptverfasser: Cao, M, Wang, K W, Fujii, Y, Tobler, W E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract In this research, the advanced hybrid neural network (AHNN) friction-component model, presented in Part 1 of this two-part paper, is integrated with an automotive drivetrain model for system simulations. The AHNN model accurately predicts the dynamic behaviours of transmission friction components over a broad operating range. It also allows variable sampling time steps in a numerical integration process. In this investigation, the AHNN model is trained using experimental data obtained from a powertrain dynamometer test stand. Since typical dynamometer measurements are acquired at locations away from friction components, a backtracking algorithm is developed to evaluate friction component torque during engagement. The trained AHNN model, together with a comprehensive drivetrain model, is implemented to simulate the shifting process of an automatic transmission system under various operating conditions, including different oil-temperature and engine-throttle levels. Simulation results demonstrate that the AHNN friction component model can be effectively utilized as a part of the drivetrain model to accurately predict transmission shift dynamics.
ISSN:0954-4070
2041-2991
DOI:10.1243/0954407041581093