Erosion and terrace failure due to agricultural land abandonment in a semi-arid environment

Agricultural land abandonment is currently widely spread in Mediterranean countries and a further increase is expected. Previous research has shown that abandoned fields in semi‐arid areas are more vulnerable to gully erosion. The absence of ploughing and slow vegetation recovery cause the formation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Earth surface processes and landforms 2008-09, Vol.33 (10), p.1574-1584
Hauptverfasser: Lesschen, J. P., Cammeraat, L. H., Nieman, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Agricultural land abandonment is currently widely spread in Mediterranean countries and a further increase is expected. Previous research has shown that abandoned fields in semi‐arid areas are more vulnerable to gully erosion. The absence of ploughing and slow vegetation recovery cause the formation of soil crusts with low infiltration rates, resulting in increased runoff and gully erosion risk. The objective of our study was to assess the extent and causes of erosion and terrace failure on abandoned fields and to discuss options for mitigation. The study was carried out in the Carcavo basin, a semi‐arid catchment in southeast Spain. At catchment scale all abandoned fields were surveyed and characteristics of each field were described. Additionally we surveyed abandoned and cultivated terraces and used statistical analyses to determine the factors that induce terrace failure. At field scale we constructed a detailed digital elevation model (DEM) for an abandoned terrace field in order to calculate sediment losses since time of abandonment. The results revealed that more than half the abandoned fields had moderate to severe erosion and the statistical analysis showed that these fields had significantly steeper slopes, were terraced and had cereals as previous land use. Factors that increase the risk of terrace failure were land abandonment, steeper terrace slope, loam texture, valley‐bottom position and shrubs on the terrace wall. The reconstructed erosion rate (87 ton ha−1 year−1) confirmed the importance of gully erosion on these abandoned terrace fields. Potential soil and water conservation practices to mitigate soil erosion after abandonment are: (1) maintenance of terrace walls, as a result more water is retained, which increases vegetation cover and consequently decreases erosion. (2) Revegetation with indigenous grass species on spots with concentrated flow, especially near terrace walls. Copyright © 2008 John Wiley & Sons, Ltd.
ISSN:0197-9337
1096-9837
DOI:10.1002/esp.1676