Controllable synthesis, characterization and optical properties of ZnS:Mn nanoparticles as a novel biosensor

To be a suitable biolabeling agent (biosensor), the nanoparticles should have high luminescent efficiency and proper surface groups for coupling with biomolecules. In this article, high-quality ZnS:Mn nanoparticles were synthesized from quaternary W/O micro-emulsion system with different Mn% for det...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials Science & Engineering C 2009-08, Vol.29 (6), p.1842-1848
Hauptverfasser: Mohagheghpour, E., Rabiee, M., Moztarzadeh, F., Tahriri, M., Jafarbeglou, M., Bizari, D., Eslami, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To be a suitable biolabeling agent (biosensor), the nanoparticles should have high luminescent efficiency and proper surface groups for coupling with biomolecules. In this article, high-quality ZnS:Mn nanoparticles were synthesized from quaternary W/O micro-emulsion system with different Mn% for detecting the best concentration. The addition of biotin and the subsequent specific binding events alter the dielectric environment of the nanoparticle, resulting in a spectral shift of the particle plasmon resonance. Cyclohexane was used as oil, Triton X-100 as surfactant, n-hexanol as a co-surfactant and mercaptoethanol and thioglycolic acid for the best linking of the biological part to the nanoparticle (as linking agents). Surfactant and co-surfactant produce a stable emulsion with connection to the surface of nanoparticles and prevention from contacting together. For qualitative and quantitative analyses of this product scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), inductive coupled plasma (ICP), zeta meter for measurement ZP and spectrograph techniques are used. The results showed that with reducing particle size, emission shifted to the lower wavelengths. In addition, with conjugation between avidin and biotin by mercaptoethanol in biologic media, spectral emission decreased.
ISSN:0928-4931
1873-0191
DOI:10.1016/j.msec.2009.02.012