Combined finite element-boundary element method modelling of elastic multi-asperity contacts
Abstract A novel formulation of elastic multi-asperity contacts based on the boundary element method (BEM) is presented for the first time, in which the influence coefficients are numerically calculated using a finite element method (FEM). The main advantage of computing the influence coefficients i...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Institution of Mechanical Engineers. Part J, Journal of engineering tribology Journal of engineering tribology, 2009-08, Vol.223 (5), p.767-776 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
A novel formulation of elastic multi-asperity contacts based on the boundary element method (BEM) is presented for the first time, in which the influence coefficients are numerically calculated using a finite element method (FEM). The main advantage of computing the influence coefficients in this manner is that it makes it also possible to consider an arbitrary load direction and multilayer systems of different mechanical properties in each layer. Furthermore, any form of anisotropy can be modelled too, where Green's functions either become very complicated or are not available at all.
The rest of the contact analysis is then performed applying a custom-developed boundary element algorithm. The scheme was tested by considering the frictionless contact between a flat surface and a sphere. The obtained results are in good agreement with the analytical solution known for a Hertzian contact. Applied to either a frictionless or a frictional contact between real surfaces of different samples, our FEM-BEM method has shown that the composite roughness of surfaces in contact uniquely determines the contact pressure distribution. |
---|---|
ISSN: | 1350-6501 2041-305X |
DOI: | 10.1243/13506501JET542 |