Comparison of Crevice Corrosion of Fe-Based Amorphous Metal and Crystalline Ni-Cr-Mo Alloy

The crevice corrosion behaviors of an Fe-based bulk metallic glass alloy (SAM1651) and a Ni-Cr-Mo crystalline alloy (C-22) were studied in 4M NaCl solution at 100 °C with cyclic potentiodynamic polarization and constant-potential tests. The corrosion damage morphologies, corrosion products, and the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2009-06, Vol.40 (6), p.1324-1333
Hauptverfasser: Shan, X., Ha, H., Payer, J.H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The crevice corrosion behaviors of an Fe-based bulk metallic glass alloy (SAM1651) and a Ni-Cr-Mo crystalline alloy (C-22) were studied in 4M NaCl solution at 100 °C with cyclic potentiodynamic polarization and constant-potential tests. The corrosion damage morphologies, corrosion products, and the compositions of corroded surfaces of these two alloys were studied with optical three-dimensional reconstruction, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and Auger electron spectroscopy (AES). It was found that the Fe-based bulk metallic glass (amorphous alloy) SAM1651 had a more positive breakdown potential and repassivation potential than crystalline alloy C-22 in cyclic potentiodynamic polarization tests and required a more positive oxidizing potential to initiate crevice corrosion in constant-potential tests. Once crevice corrosion initiated, the corrosion propagation of C-22 was more localized near the crevice border compared to SAM1651, and SAM1651 repassivated more readily than C-22. The EDS results indicated that the corrosion products of both alloys contained a high amount of O and were enriched in Mo and Cr. The AES results indicated that a Cr-rich oxide passive film was formed on the surfaces of both alloys, and both alloys corroded congruently in the crevice corrosion damage areas.
ISSN:1073-5623
1543-1940
DOI:10.1007/s11661-008-9697-9