Bench-scale evaluation of seawater desalination by reverse osmosis
In bench-scale tests of seawater reverse osmosis desalination it is important to carefully consider osmotic pressure effects and determine the extent of concentration polarization so that sources of flux variation—whether from fouling, compaction, or osmotic pressure changes—can be properly assessed...
Gespeichert in:
Veröffentlicht in: | Desalination 2010-01, Vol.250 (2), p.490-499 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In bench-scale tests of seawater reverse osmosis desalination it is important to carefully consider osmotic pressure effects and determine the extent of concentration polarization so that sources of flux variation—whether from fouling, compaction, or osmotic pressure changes—can be properly assessed. Rigorous modeling of concentration polarization is difficult because of the complex geometries and flow regimes in RO modules; typically, concentration polarization must be measured. However, concentration polarization measurement usually requires knowledge of membrane permeability, which can vary from coupon to coupon. In this study a method is presented to determine both the membrane permeability and the concentration polarization regime in a single test. The key to the test is to allow the salt concentration to vary over time in a predictable way and extract parameters from a model fitted to the flux data. The usefulness of this technique is highlighted by evaluating results from several seawater experiments. It was found that specific flux decline in the experiments was caused by changes in osmotic pressure and membrane compaction. RO fouling by seawater organic-matter was not significant for the several seawater samples tested. |
---|---|
ISSN: | 0011-9164 1873-4464 |
DOI: | 10.1016/j.desal.2009.06.072 |