Turbulence structure above a vegetation canopy

We compare the turbulence statistics of the canopy/roughness sublayer (RSL) and the inertial sublayer (ISL) above. In the RSL the turbulence is more coherent and more efficient at transporting momentum and scalars and in most ways resembles a turbulent mixing layer rather than a boundary layer. To u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2009-10, Vol.637, p.387-424
Hauptverfasser: FINNIGAN, JOHN J., SHAW, ROGER H., PATTON, EDWARD G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We compare the turbulence statistics of the canopy/roughness sublayer (RSL) and the inertial sublayer (ISL) above. In the RSL the turbulence is more coherent and more efficient at transporting momentum and scalars and in most ways resembles a turbulent mixing layer rather than a boundary layer. To understand these differences we analyse a large-eddy simulation of the flow above and within a vegetation canopy. The three-dimensional velocity and scalar structure of a characteristic eddy is educed by compositing, using local maxima of static pressure at the canopy top as a trigger. The characteristic eddy consists of an upstream head-down sweep-generating hairpin vortex superimposed on a downstream head-up ejection-generating hairpin. The conjunction of the sweep and ejection produces the pressure maximum between the hairpins, and this is also the location of a coherent scalar microfront. This eddy structure matches that observed in simulations of homogeneous-shear flows and channel flows by several workers and also fits with earlier field and wind-tunnel measurements in canopy flows. It is significantly different from the eddy structure educed over smooth walls by conditional sampling based only on ejections as a trigger. The characteristic eddy was also reconstructed by empirical orthogonal function (EOF) analysis, when only the dominant, sweep-generating head-down hairpin was recovered, prompting a re-evaluation of earlier results based on EOF analysis of wind-tunnel data. A phenomenological model is proposed to explain both the structure of the characteristic eddy and the key differences between turbulence in the canopy/RSL and the ISL above. This model suggests a new scaling length that can be used to collapse turbulence moments over vegetation canopies.
ISSN:0022-1120
1469-7645
DOI:10.1017/S0022112009990589