Attribute selection with fuzzy decision reducts
Rough set theory provides a methodology for data analysis based on the approximation of concepts in information systems. It revolves around the notion of discernibility: the ability to distinguish between objects, based on their attribute values. It allows to infer data dependencies that are useful...
Gespeichert in:
Veröffentlicht in: | Information sciences 2010-01, Vol.180 (2), p.209-224 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Rough set theory provides a methodology for data analysis based on the approximation of concepts in information systems. It revolves around the notion of discernibility: the ability to distinguish between objects, based on their attribute values. It allows to infer data dependencies that are useful in the fields of feature selection and decision model construction. In many cases, however, it is more natural, and more effective, to consider a gradual notion of discernibility. Therefore, within the context of fuzzy rough set theory, we present a generalization of the classical rough set framework for data-based attribute selection and reduction using fuzzy tolerance relations. The paper unifies existing work in this direction, and introduces the concept of fuzzy decision reducts, dependent on an increasing attribute subset measure. Experimental results demonstrate the potential of fuzzy decision reducts to discover shorter attribute subsets, leading to decision models with a better coverage and with comparable, or even higher accuracy. |
---|---|
ISSN: | 0020-0255 1872-6291 |
DOI: | 10.1016/j.ins.2009.09.008 |