Toxicity and organic content characterization of olive oil mill wastewater undergoing a sequential treatment with fungi and photo-Fenton oxidation

Olive oil mill wastewater (OOMW) is responsible for serious environmental problems. In this study, the efficiency of two treatments involving fungi and photo-Fenton oxidation, sequentially applied to OOMW was analyzed for organic compounds degradation and toxicity mitigation. The treatment with fung...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hazardous materials 2009-12, Vol.172 (2), p.1560-1572
Hauptverfasser: Justino, Celine I., Duarte, Katia, Loureiro, Filipe, Pereira, Ruth, Antunes, Sara C., Marques, Sérgio. M., Gonçalves, Fernando, Rocha-Santos, Teresa A.P., Freitas, Ana C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Olive oil mill wastewater (OOMW) is responsible for serious environmental problems. In this study, the efficiency of two treatments involving fungi and photo-Fenton oxidation, sequentially applied to OOMW was analyzed for organic compounds degradation and toxicity mitigation. The treatment with fungi (especially Pleurotus sajor caju) of diluted OOMW samples promoted a reduction of their acute toxicity to Daphnia longispina. Although this fungi species have not induced significant color reduction it was responsible for 72,91 and 77% reductions in chemical oxygen demand (COD), total phenolic and organic compound contents. After biological treatment, photo-Fenton oxidation seemed to be an interesting solution, especially for color reduction. However, the OOMWs remained highly toxic after photo-Fenton oxidation. Considering the second sequence of treatments, namely photo-Fenton oxidation followed by biological treatment, the former revealed, once more, a great potential because it can be applied to non-diluted OOMW, with significant reductions in COD (53–76%), total phenolic content (81–92%) and organic compounds content (100%). Despite fungal species still have demonstrated a high capacity for bioaccumulation of organic compounds, resulting from photo-Fenton oxidation, the biological treatment did not cause substantial benefits in terms of COD, total phenolic content and toxicity reduction.
ISSN:0304-3894
1873-3336
DOI:10.1016/j.jhazmat.2009.08.028