The effect of uncertainty on the optimal closed-loop supply chain planning under different partnerships structure

In a global economy, the key to success is providing products around the world at the right time in the right quantity and quality, at a low cost. Efficient supply chains have an important role in guaranteeing this success. Optimized planning of such structures is required and uncertainties regardin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & chemical engineering 2009-12, Vol.33 (12), p.2144-2158
Hauptverfasser: Amaro, A.C.S., Barbosa-Póvoa, A.P.F.D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In a global economy, the key to success is providing products around the world at the right time in the right quantity and quality, at a low cost. Efficient supply chains have an important role in guaranteeing this success. Optimized planning of such structures is required and uncertainties regarding product demands and prices, amongst other supply chain conditions, should also be considered. In this paper, we look into supply chain planning decisions that account for uncertainty on product portfolios demand and prices. A multi-period planning model is developed where the supply chain operational decisions on supply, production, transportation, and distribution at the actual period consider the uncertainty on products’ demand and prices. Different decision scenarios, involving the evaluation of the supply chain economical performance, are analyzed (e.g. global operating costs/profit realized) for different criteria on the importance of the partners within the global chain (i.e. partners’ structure). A Mixed Integer Linear Programming (MILP) formulation is formulated for each planning scenario and the optimal solution is reached using a standard Branch and Bound (B&B) procedure. The final results provide details on the supply chain partners production, transportation and inventory, at each planning period, while accounting for the importance of each partner in the global chain as well as demand/price uncertainties. The applicability of the developed formulation is illustrated through the solution of a real case-study involving an industrial chain in the pharmaceutical sector.
ISSN:0098-1354
1873-4375
DOI:10.1016/j.compchemeng.2009.06.003