TAIFEX and KOSPI 200 forecasting based on two-factors high-order fuzzy time series and particle swarm optimization
Since the fuzzy time series forecasting methods provide a powerful framework to cope with vague or ambiguous problems, they have been widely used in real applications. The forecasting accuracy of these methods usually, however, depend on their universe of discourse and the length of intervals. So, w...
Gespeichert in:
Veröffentlicht in: | Expert systems with applications 2010-03, Vol.37 (2), p.959-967 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Since the fuzzy time series forecasting methods provide a powerful framework to cope with vague or ambiguous problems, they have been widely used in real applications. The forecasting accuracy of these methods usually, however, depend on their universe of discourse and the length of intervals. So, we present a new forecasting method using two-factors high-order fuzzy time series and particle swarm optimization (PSO) for increasing the forecasting accuracy. To show the effectiveness of the proposed method, we applied our method for the Taiwan futures exchange (TAIFEX) forecasting and the Korea composite price index (KOSPI) 200 forecasting. The results show better forecasting accuracy than previous methods. |
---|---|
ISSN: | 0957-4174 1873-6793 |
DOI: | 10.1016/j.eswa.2009.05.081 |