Stability analysis of Cohen–Grossberg neural networks with discontinuous neuron activations

In this paper, we consider the dynamical behavior of delayed Cohen–Grossberg neural networks with discontinuous activation functions. Some sufficient conditions are derived to guarantee the existence, uniqueness and global stability of the equilibrium point of the neural network. Convergence behavio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematical modelling 2010-02, Vol.34 (2), p.358-365
Hauptverfasser: Meng, Yimin, Huang, Lihong, Guo, Zhenyuan, Hu, Qingwen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we consider the dynamical behavior of delayed Cohen–Grossberg neural networks with discontinuous activation functions. Some sufficient conditions are derived to guarantee the existence, uniqueness and global stability of the equilibrium point of the neural network. Convergence behavior for both state and output is discussed. The constraints imposed on the interconnection matrices, which concern the theory of M-matrices, are easily verifiable and independent of the delay parameter. The obtained results improve and extend the previous results. Finally, we give an numerical example to illustrate the effectiveness of the theoretical results.
ISSN:0307-904X
DOI:10.1016/j.apm.2009.04.016