Shuttle and MIR Special Environmental Effects and Hardware Cleanliness

The Evaluation of Space Environment and Effects on Materials (ESEM) experiments were developed, flown in-space on the STS-85 mission (August 1997), returned to Earth and analysed as one element of a collaboration between the National Space Development Agency (NASDA) of Japan and the National Aeronau...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:High performance polymers 2000-03, Vol.12 (1), p.65-82
Hauptverfasser: Harvey, Gale A, Humes, Donald H, Kinard, William H
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Evaluation of Space Environment and Effects on Materials (ESEM) experiments were developed, flown in-space on the STS-85 mission (August 1997), returned to Earth and analysed as one element of a collaboration between the National Space Development Agency (NASDA) of Japan and the National Aeronautics and Space Agency (NASA) of the United States. The primary objectives of the ESEM experiments were to investigate atomic oxygen effects on materials, cosmic dust and man-made debris, and Shuttle-induced contamination. In particular, the change in scattering of light from the 1/4 mil aluminized Kapton film due to atomic oxygen erosion and Shuttle-induced molecular contamination are discussed. The MIR environmental effects payload (MEEP) was attached to the docking module of the MIR space station for 18 months during calendar years 1996 and 1997 (March 1996, STS 76 to October 1997, STS 86). A solar panel array with more than 10 years space exposure was removed from the MIR core module in November 1997 and returned to Earth in January 1998, STS 89. MEEP and the returned solar array are part of the International Space Station (ISS) Risk Mitigation Program. This space flight hardware has been inspected and studied by teams of space environmental effects (SEE) investigators for micrometeoroid and space debris effects, space exposure effects on materials and electrical performance. This paper reports changes in cleanliness of parts of MEEP and the solar array due to the space exposures. Special attention is given to the extensive water soluble residues deposited on some of the flight hardware surfaces. Directionality of deposition and chemistry of these residues are discussed.
ISSN:0954-0083
1361-6412
DOI:10.1088/0954-0083/12/1/306