Internal Thermodynamical Equilibrium And Consequences For Rate Law Expressions For Elementary Chemical And Physical Reactions
By viewing reactant species to be in a state of thermodynamical equilibrium with its various members which constitutes a set within a set of topological parameters various states of internal equilibrium within the same species would exist subject to the Gibbs thermodynamical criteria. Some examples...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | By viewing reactant species to be in a state of thermodynamical equilibrium with its various members which constitutes a set within a set of topological parameters various states of internal equilibrium within the same species would exist subject to the Gibbs thermodynamical criteria. Some examples from actual ab initio computer simulations show that there exists an empirical relationship between the activity coefficient ratio and the so-called reactivity coefficients, defined as a measure of departure of the rate constant with varying concentration of reactants in a system at equilibrium, where forward and backward rates can still be measured. These ideas are applied to charged reaction dynamics where a generalization of the BrSnsted and Bjerrum rate expression is obtained. |
---|---|
ISSN: | 0094-243X |
DOI: | 10.1063/1.3192227 |