Antenna-in-Package Design for Wirebond Interconnection to Highly Integrated 60-GHz Radios

This paper first presents a quasi-cavity-backed, guard-ring-directed, substrate-material-modulated slot antenna. The antenna, intended for use in highly integrated 60-GHz radios, is deliberately designed to exhibit capacitive input impedance to suit low-cost wire-bonding packaging and assembly techn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on antennas and propagation 2009-10, Vol.57 (10), p.2842-2852
Hauptverfasser: Zhang, Y.P., Sun, M., Chua, K.M., Wai, L.L., Duixian Liu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper first presents a quasi-cavity-backed, guard-ring-directed, substrate-material-modulated slot antenna. The antenna, intended for use in highly integrated 60-GHz radios, is deliberately designed to exhibit capacitive input impedance to suit low-cost wire-bonding packaging and assembly technique. The antenna implemented in a thin cavity-down ceramic ball grid array (CBGA) package in low-temperature cofired ceramic (LTCC) technology has achieved an acceptable impedance bandwidth from 59 to 65 GHz with an estimated efficiency of 94%. At millimeter-wave (mm-wave) frequency 60 GHz, one of key challenges is how to realize low-loss interconnection between a radio chip and an antenna using wire-bonding technique. This paper then addresses this issue in the framework of antenna-in-package (AiP) design at 60 GHz and proposes a new solution to the challenge. Detailed wirebond design method and results are given. A major concern with AiP is the risk of the antenna coupling to the radio chip. This paper also evaluates this unwanted coupling and shows that the coupling from the in-package antenna to the on-chip inductor is lower than 30 dB for the worst case. These results clearly demonstrate the feasibility and promise of the elegant AiP technology for emerging high-speed short-range 60-GHz wireless communications.
ISSN:0018-926X
1558-2221
DOI:10.1109/TAP.2009.2029290