Interactive contribution of grain size and grain orientation to coercivity of melt spun ribbons

During melt spinning process, the improvement of certain grain orientation and the refinement of grain size with surface velocity have interactive and contradictory effects on the magnetic properties. The contributions of these effects have seldom been taken into account and they were discussed in t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of magnetism and magnetic materials 2010-02, Vol.322 (3), p.362-365
Hauptverfasser: Wang, N., Li, G., Yao, W.J., Wen, X.X.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:During melt spinning process, the improvement of certain grain orientation and the refinement of grain size with surface velocity have interactive and contradictory effects on the magnetic properties. The contributions of these effects have seldom been taken into account and they were discussed in this paper via Fe–2, 4, 6.5 wt% Si alloys. Heat treatment at 1173 K for 1 h was performed to show the annealing impact. The X-ray diffraction patterns show that the high surface velocity and heat treatment increase the intensity ratio of line (2 0 0) to (1 1 0) of A2 phase. The (2 0 0) line corresponds to (2 0 0) plane in 〈0 0 1〉 direction, easy magnetization direction of α-Fe phase in Fe–Si alloy. The improvement of this grain orientation with the surface velocity decreases the coercivity, which should increase due to the grain refinement. It is revealed that the 〈0 0 1〉 texture promoted by the anisotropic heat release during melt spinning process is one factor to improve the magnetic properties and should be considered when preparing soft magnetic materials.
ISSN:0304-8853
DOI:10.1016/j.jmmm.2009.09.061