On Lazy Bin Covering and Packing problems
In this paper, we study two interesting variants of the classical bin packing problem, called Lazy Bin Covering (LBC) and Cardinality Constrained Maximum Resource Bin Packing (CCMRBP) problems. For the offline LBC problem, we first prove the approximation ratio of the First-Fit-Decreasing and First-...
Gespeichert in:
Veröffentlicht in: | Theoretical computer science 2010, Vol.411 (1), p.277-284 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we study two interesting variants of the classical bin packing problem, called
Lazy Bin Covering (LBC) and
Cardinality Constrained Maximum Resource Bin Packing (CCMRBP) problems. For the offline LBC problem, we first prove the approximation ratio of the First-Fit-Decreasing and First-Fit-Increasing algorithms, then present an APTAS. For the online LBC problem, we give a competitive analysis for the algorithms of Next-Fit, Worst-Fit, First-Fit, and a modified HARMONIC
M
algorithm. The CCMRBP problem is a generalization of the
Maximum Resource Bin Packing (MRBP) problem Boyar et al. (2006)
[1]. For this problem, we prove that its offline version is no harder to approximate than the offline MRBP problem. |
---|---|
ISSN: | 0304-3975 1879-2294 |
DOI: | 10.1016/j.tcs.2009.10.006 |