A Model for Oil-Gas Pipelines Cost Prediction Based on a Data Mining Process

This paper addresses the problems associated with the cost estimation of oil/gas pipelines during the elaboration of feasibility assessments. Techno-economic parameters, i.e., cost, length and diameter, are critical for such studies at the preliminary design stage. A methodology for the development...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIP conference proceedings 2008-09, Vol.1148, p.599-604
Hauptverfasser: Batzias, Fragiskos A, Spanidis, Phillip-Mark P
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper addresses the problems associated with the cost estimation of oil/gas pipelines during the elaboration of feasibility assessments. Techno-economic parameters, i.e., cost, length and diameter, are critical for such studies at the preliminary design stage. A methodology for the development of a cost prediction model based on Data Mining (DM) process is proposed. The design and implementation of a Knowledge Base (KB), maintaining data collected from various disciplines of the pipeline industry, are presented. The formulation of a cost prediction equation is demonstrated by applying multiple regression analysis using data sets extracted from the KB. Following the methodology proposed, a learning context is inductively developed as background pipeline data are acquired, grouped and stored in the KB, and through a linear regression model provide statistically substantial results, useful for project managers or decision makers.
ISSN:0094-243X