Investigation of hot ductility in Al-killed boron steels
The influence of boron to nitrogen ratio, strain rate and cooling rate on hot ductility of aluminium-killed, low carbon, boron microalloyed steel was investigated. Hot tensile testing was performed on steel samples reheated in argon to 1300°C, cooled at rates of 0.3, 1.2 and 3.0°Cs−1 to temperatures...
Gespeichert in:
Veröffentlicht in: | Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2008-10, Vol.494 (1-2), p.263-275 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 275 |
---|---|
container_issue | 1-2 |
container_start_page | 263 |
container_title | Materials science & engineering. A, Structural materials : properties, microstructure and processing |
container_volume | 494 |
creator | Chown, L.H. Cornish, L.A. |
description | The influence of boron to nitrogen ratio, strain rate and cooling rate on hot ductility of aluminium-killed, low carbon, boron microalloyed steel was investigated. Hot tensile testing was performed on steel samples reheated in argon to 1300°C, cooled at rates of 0.3, 1.2 and 3.0°Cs−1 to temperatures in the range 750–1050°C, and then strained to failure at initial strain rates of 1×10−4 or 1×10−3s−1. It was found that the steel with a B:N ratio of 0.19 showed deep hot ductility troughs for all tested conditions; the steel with a B:N ratio of 0.47 showed a deep ductility trough for a high cooling rate of 3.0°Cs−1 and the steel with a near-stoichiometric B:N ratio of 0.75 showed no ductility troughs for the tested conditions. The ductility troughs extended from ∼900°C (near the Ae3 temperature) to ∼1000 or 1050°C in the single-phase austenite region. The proposed mechanism of hot ductility improvement with increase in B:N ratio in these steels is that the B removes N from solution, thus reducing the strain-induced precipitation of AlN. Additionally, BN co-precipitates with sulphides, preventing precipitation of fine MnS, CuS and FeS, and forming large, complex precipitates that have no effect on hot ductility. |
doi_str_mv | 10.1016/j.msea.2008.04.026 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34997811</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509308004449</els_id><sourcerecordid>34997811</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-684dcf2e7204226d2c62b54b11bd465a87a6710688a885d4673556815f18956d3</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsv4Go2upvxJJNkMuCmFC-Fghtdh0yS0dR0piZpoW9vSotLVwcO338uH0K3GCoMmD-sqnW0qiIAogJaAeFnaIJFU5e0rfk5mkBLcMmgrS_RVYwrAMAU2ASJxbCzMblPldw4FGNffI2pMFudnHdpX7ihmPny23lvTdGNITMxWevjNbrolY_25lSn6OP56X3-Wi7fXhbz2bLUNcep5IIa3RPbEKCEcEM0Jx2jHcadoZwp0SjeYOBCKCFYbjU1Y1xg1mPRMm7qKbo_zt2E8WebT5VrF7X1Xg123EZZ07ZtBMYZJEdQhzHGYHu5CW6twl5ikAdJciUPkuRBkgQqs6QcujtNV1Er3wc1aBf_kgR4yzmmmXs8cvlzu3M2yKidHbQ1LlidpBndf2t-AfKkew4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34997811</pqid></control><display><type>article</type><title>Investigation of hot ductility in Al-killed boron steels</title><source>Elsevier ScienceDirect Journals</source><creator>Chown, L.H. ; Cornish, L.A.</creator><creatorcontrib>Chown, L.H. ; Cornish, L.A.</creatorcontrib><description>The influence of boron to nitrogen ratio, strain rate and cooling rate on hot ductility of aluminium-killed, low carbon, boron microalloyed steel was investigated. Hot tensile testing was performed on steel samples reheated in argon to 1300°C, cooled at rates of 0.3, 1.2 and 3.0°Cs−1 to temperatures in the range 750–1050°C, and then strained to failure at initial strain rates of 1×10−4 or 1×10−3s−1. It was found that the steel with a B:N ratio of 0.19 showed deep hot ductility troughs for all tested conditions; the steel with a B:N ratio of 0.47 showed a deep ductility trough for a high cooling rate of 3.0°Cs−1 and the steel with a near-stoichiometric B:N ratio of 0.75 showed no ductility troughs for the tested conditions. The ductility troughs extended from ∼900°C (near the Ae3 temperature) to ∼1000 or 1050°C in the single-phase austenite region. The proposed mechanism of hot ductility improvement with increase in B:N ratio in these steels is that the B removes N from solution, thus reducing the strain-induced precipitation of AlN. Additionally, BN co-precipitates with sulphides, preventing precipitation of fine MnS, CuS and FeS, and forming large, complex precipitates that have no effect on hot ductility.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2008.04.026</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Al-killed steel ; Aluminium nitride ; Applied sciences ; Boron nitride ; Elasticity. Plasticity ; Exact sciences and technology ; Hot ductility ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Metals. Metallurgy ; Sulphides</subject><ispartof>Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2008-10, Vol.494 (1-2), p.263-275</ispartof><rights>2008 Elsevier B.V.</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-684dcf2e7204226d2c62b54b11bd465a87a6710688a885d4673556815f18956d3</citedby><cites>FETCH-LOGICAL-c361t-684dcf2e7204226d2c62b54b11bd465a87a6710688a885d4673556815f18956d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0921509308004449$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20696614$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chown, L.H.</creatorcontrib><creatorcontrib>Cornish, L.A.</creatorcontrib><title>Investigation of hot ductility in Al-killed boron steels</title><title>Materials science & engineering. A, Structural materials : properties, microstructure and processing</title><description>The influence of boron to nitrogen ratio, strain rate and cooling rate on hot ductility of aluminium-killed, low carbon, boron microalloyed steel was investigated. Hot tensile testing was performed on steel samples reheated in argon to 1300°C, cooled at rates of 0.3, 1.2 and 3.0°Cs−1 to temperatures in the range 750–1050°C, and then strained to failure at initial strain rates of 1×10−4 or 1×10−3s−1. It was found that the steel with a B:N ratio of 0.19 showed deep hot ductility troughs for all tested conditions; the steel with a B:N ratio of 0.47 showed a deep ductility trough for a high cooling rate of 3.0°Cs−1 and the steel with a near-stoichiometric B:N ratio of 0.75 showed no ductility troughs for the tested conditions. The ductility troughs extended from ∼900°C (near the Ae3 temperature) to ∼1000 or 1050°C in the single-phase austenite region. The proposed mechanism of hot ductility improvement with increase in B:N ratio in these steels is that the B removes N from solution, thus reducing the strain-induced precipitation of AlN. Additionally, BN co-precipitates with sulphides, preventing precipitation of fine MnS, CuS and FeS, and forming large, complex precipitates that have no effect on hot ductility.</description><subject>Al-killed steel</subject><subject>Aluminium nitride</subject><subject>Applied sciences</subject><subject>Boron nitride</subject><subject>Elasticity. Plasticity</subject><subject>Exact sciences and technology</subject><subject>Hot ductility</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Metals. Metallurgy</subject><subject>Sulphides</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWKsv4Go2upvxJJNkMuCmFC-Fghtdh0yS0dR0piZpoW9vSotLVwcO338uH0K3GCoMmD-sqnW0qiIAogJaAeFnaIJFU5e0rfk5mkBLcMmgrS_RVYwrAMAU2ASJxbCzMblPldw4FGNffI2pMFudnHdpX7ihmPny23lvTdGNITMxWevjNbrolY_25lSn6OP56X3-Wi7fXhbz2bLUNcep5IIa3RPbEKCEcEM0Jx2jHcadoZwp0SjeYOBCKCFYbjU1Y1xg1mPRMm7qKbo_zt2E8WebT5VrF7X1Xg123EZZ07ZtBMYZJEdQhzHGYHu5CW6twl5ikAdJciUPkuRBkgQqs6QcujtNV1Er3wc1aBf_kgR4yzmmmXs8cvlzu3M2yKidHbQ1LlidpBndf2t-AfKkew4</recordid><startdate>20081025</startdate><enddate>20081025</enddate><creator>Chown, L.H.</creator><creator>Cornish, L.A.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20081025</creationdate><title>Investigation of hot ductility in Al-killed boron steels</title><author>Chown, L.H. ; Cornish, L.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-684dcf2e7204226d2c62b54b11bd465a87a6710688a885d4673556815f18956d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Al-killed steel</topic><topic>Aluminium nitride</topic><topic>Applied sciences</topic><topic>Boron nitride</topic><topic>Elasticity. Plasticity</topic><topic>Exact sciences and technology</topic><topic>Hot ductility</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Metals. Metallurgy</topic><topic>Sulphides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chown, L.H.</creatorcontrib><creatorcontrib>Cornish, L.A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chown, L.H.</au><au>Cornish, L.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of hot ductility in Al-killed boron steels</atitle><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2008-10-25</date><risdate>2008</risdate><volume>494</volume><issue>1-2</issue><spage>263</spage><epage>275</epage><pages>263-275</pages><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>The influence of boron to nitrogen ratio, strain rate and cooling rate on hot ductility of aluminium-killed, low carbon, boron microalloyed steel was investigated. Hot tensile testing was performed on steel samples reheated in argon to 1300°C, cooled at rates of 0.3, 1.2 and 3.0°Cs−1 to temperatures in the range 750–1050°C, and then strained to failure at initial strain rates of 1×10−4 or 1×10−3s−1. It was found that the steel with a B:N ratio of 0.19 showed deep hot ductility troughs for all tested conditions; the steel with a B:N ratio of 0.47 showed a deep ductility trough for a high cooling rate of 3.0°Cs−1 and the steel with a near-stoichiometric B:N ratio of 0.75 showed no ductility troughs for the tested conditions. The ductility troughs extended from ∼900°C (near the Ae3 temperature) to ∼1000 or 1050°C in the single-phase austenite region. The proposed mechanism of hot ductility improvement with increase in B:N ratio in these steels is that the B removes N from solution, thus reducing the strain-induced precipitation of AlN. Additionally, BN co-precipitates with sulphides, preventing precipitation of fine MnS, CuS and FeS, and forming large, complex precipitates that have no effect on hot ductility.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2008.04.026</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-5093 |
ispartof | Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2008-10, Vol.494 (1-2), p.263-275 |
issn | 0921-5093 1873-4936 |
language | eng |
recordid | cdi_proquest_miscellaneous_34997811 |
source | Elsevier ScienceDirect Journals |
subjects | Al-killed steel Aluminium nitride Applied sciences Boron nitride Elasticity. Plasticity Exact sciences and technology Hot ductility Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology Metals. Metallurgy Sulphides |
title | Investigation of hot ductility in Al-killed boron steels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T17%3A54%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20hot%20ductility%20in%20Al-killed%20boron%20steels&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Chown,%20L.H.&rft.date=2008-10-25&rft.volume=494&rft.issue=1-2&rft.spage=263&rft.epage=275&rft.pages=263-275&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2008.04.026&rft_dat=%3Cproquest_cross%3E34997811%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34997811&rft_id=info:pmid/&rft_els_id=S0921509308004449&rfr_iscdi=true |