Investigation of hot ductility in Al-killed boron steels

The influence of boron to nitrogen ratio, strain rate and cooling rate on hot ductility of aluminium-killed, low carbon, boron microalloyed steel was investigated. Hot tensile testing was performed on steel samples reheated in argon to 1300°C, cooled at rates of 0.3, 1.2 and 3.0°Cs−1 to temperatures...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2008-10, Vol.494 (1-2), p.263-275
Hauptverfasser: Chown, L.H., Cornish, L.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 275
container_issue 1-2
container_start_page 263
container_title Materials science & engineering. A, Structural materials : properties, microstructure and processing
container_volume 494
creator Chown, L.H.
Cornish, L.A.
description The influence of boron to nitrogen ratio, strain rate and cooling rate on hot ductility of aluminium-killed, low carbon, boron microalloyed steel was investigated. Hot tensile testing was performed on steel samples reheated in argon to 1300°C, cooled at rates of 0.3, 1.2 and 3.0°Cs−1 to temperatures in the range 750–1050°C, and then strained to failure at initial strain rates of 1×10−4 or 1×10−3s−1. It was found that the steel with a B:N ratio of 0.19 showed deep hot ductility troughs for all tested conditions; the steel with a B:N ratio of 0.47 showed a deep ductility trough for a high cooling rate of 3.0°Cs−1 and the steel with a near-stoichiometric B:N ratio of 0.75 showed no ductility troughs for the tested conditions. The ductility troughs extended from ∼900°C (near the Ae3 temperature) to ∼1000 or 1050°C in the single-phase austenite region. The proposed mechanism of hot ductility improvement with increase in B:N ratio in these steels is that the B removes N from solution, thus reducing the strain-induced precipitation of AlN. Additionally, BN co-precipitates with sulphides, preventing precipitation of fine MnS, CuS and FeS, and forming large, complex precipitates that have no effect on hot ductility.
doi_str_mv 10.1016/j.msea.2008.04.026
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34997811</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509308004449</els_id><sourcerecordid>34997811</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-684dcf2e7204226d2c62b54b11bd465a87a6710688a885d4673556815f18956d3</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsv4Go2upvxJJNkMuCmFC-Fghtdh0yS0dR0piZpoW9vSotLVwcO338uH0K3GCoMmD-sqnW0qiIAogJaAeFnaIJFU5e0rfk5mkBLcMmgrS_RVYwrAMAU2ASJxbCzMblPldw4FGNffI2pMFudnHdpX7ihmPny23lvTdGNITMxWevjNbrolY_25lSn6OP56X3-Wi7fXhbz2bLUNcep5IIa3RPbEKCEcEM0Jx2jHcadoZwp0SjeYOBCKCFYbjU1Y1xg1mPRMm7qKbo_zt2E8WebT5VrF7X1Xg123EZZ07ZtBMYZJEdQhzHGYHu5CW6twl5ikAdJciUPkuRBkgQqs6QcujtNV1Er3wc1aBf_kgR4yzmmmXs8cvlzu3M2yKidHbQ1LlidpBndf2t-AfKkew4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34997811</pqid></control><display><type>article</type><title>Investigation of hot ductility in Al-killed boron steels</title><source>Elsevier ScienceDirect Journals</source><creator>Chown, L.H. ; Cornish, L.A.</creator><creatorcontrib>Chown, L.H. ; Cornish, L.A.</creatorcontrib><description>The influence of boron to nitrogen ratio, strain rate and cooling rate on hot ductility of aluminium-killed, low carbon, boron microalloyed steel was investigated. Hot tensile testing was performed on steel samples reheated in argon to 1300°C, cooled at rates of 0.3, 1.2 and 3.0°Cs−1 to temperatures in the range 750–1050°C, and then strained to failure at initial strain rates of 1×10−4 or 1×10−3s−1. It was found that the steel with a B:N ratio of 0.19 showed deep hot ductility troughs for all tested conditions; the steel with a B:N ratio of 0.47 showed a deep ductility trough for a high cooling rate of 3.0°Cs−1 and the steel with a near-stoichiometric B:N ratio of 0.75 showed no ductility troughs for the tested conditions. The ductility troughs extended from ∼900°C (near the Ae3 temperature) to ∼1000 or 1050°C in the single-phase austenite region. The proposed mechanism of hot ductility improvement with increase in B:N ratio in these steels is that the B removes N from solution, thus reducing the strain-induced precipitation of AlN. Additionally, BN co-precipitates with sulphides, preventing precipitation of fine MnS, CuS and FeS, and forming large, complex precipitates that have no effect on hot ductility.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2008.04.026</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Al-killed steel ; Aluminium nitride ; Applied sciences ; Boron nitride ; Elasticity. Plasticity ; Exact sciences and technology ; Hot ductility ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Metals. Metallurgy ; Sulphides</subject><ispartof>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing, 2008-10, Vol.494 (1-2), p.263-275</ispartof><rights>2008 Elsevier B.V.</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-684dcf2e7204226d2c62b54b11bd465a87a6710688a885d4673556815f18956d3</citedby><cites>FETCH-LOGICAL-c361t-684dcf2e7204226d2c62b54b11bd465a87a6710688a885d4673556815f18956d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0921509308004449$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20696614$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chown, L.H.</creatorcontrib><creatorcontrib>Cornish, L.A.</creatorcontrib><title>Investigation of hot ductility in Al-killed boron steels</title><title>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</title><description>The influence of boron to nitrogen ratio, strain rate and cooling rate on hot ductility of aluminium-killed, low carbon, boron microalloyed steel was investigated. Hot tensile testing was performed on steel samples reheated in argon to 1300°C, cooled at rates of 0.3, 1.2 and 3.0°Cs−1 to temperatures in the range 750–1050°C, and then strained to failure at initial strain rates of 1×10−4 or 1×10−3s−1. It was found that the steel with a B:N ratio of 0.19 showed deep hot ductility troughs for all tested conditions; the steel with a B:N ratio of 0.47 showed a deep ductility trough for a high cooling rate of 3.0°Cs−1 and the steel with a near-stoichiometric B:N ratio of 0.75 showed no ductility troughs for the tested conditions. The ductility troughs extended from ∼900°C (near the Ae3 temperature) to ∼1000 or 1050°C in the single-phase austenite region. The proposed mechanism of hot ductility improvement with increase in B:N ratio in these steels is that the B removes N from solution, thus reducing the strain-induced precipitation of AlN. Additionally, BN co-precipitates with sulphides, preventing precipitation of fine MnS, CuS and FeS, and forming large, complex precipitates that have no effect on hot ductility.</description><subject>Al-killed steel</subject><subject>Aluminium nitride</subject><subject>Applied sciences</subject><subject>Boron nitride</subject><subject>Elasticity. Plasticity</subject><subject>Exact sciences and technology</subject><subject>Hot ductility</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Metals. Metallurgy</subject><subject>Sulphides</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWKsv4Go2upvxJJNkMuCmFC-Fghtdh0yS0dR0piZpoW9vSotLVwcO338uH0K3GCoMmD-sqnW0qiIAogJaAeFnaIJFU5e0rfk5mkBLcMmgrS_RVYwrAMAU2ASJxbCzMblPldw4FGNffI2pMFudnHdpX7ihmPny23lvTdGNITMxWevjNbrolY_25lSn6OP56X3-Wi7fXhbz2bLUNcep5IIa3RPbEKCEcEM0Jx2jHcadoZwp0SjeYOBCKCFYbjU1Y1xg1mPRMm7qKbo_zt2E8WebT5VrF7X1Xg123EZZ07ZtBMYZJEdQhzHGYHu5CW6twl5ikAdJciUPkuRBkgQqs6QcujtNV1Er3wc1aBf_kgR4yzmmmXs8cvlzu3M2yKidHbQ1LlidpBndf2t-AfKkew4</recordid><startdate>20081025</startdate><enddate>20081025</enddate><creator>Chown, L.H.</creator><creator>Cornish, L.A.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20081025</creationdate><title>Investigation of hot ductility in Al-killed boron steels</title><author>Chown, L.H. ; Cornish, L.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-684dcf2e7204226d2c62b54b11bd465a87a6710688a885d4673556815f18956d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Al-killed steel</topic><topic>Aluminium nitride</topic><topic>Applied sciences</topic><topic>Boron nitride</topic><topic>Elasticity. Plasticity</topic><topic>Exact sciences and technology</topic><topic>Hot ductility</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Metals. Metallurgy</topic><topic>Sulphides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chown, L.H.</creatorcontrib><creatorcontrib>Cornish, L.A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chown, L.H.</au><au>Cornish, L.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of hot ductility in Al-killed boron steels</atitle><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2008-10-25</date><risdate>2008</risdate><volume>494</volume><issue>1-2</issue><spage>263</spage><epage>275</epage><pages>263-275</pages><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>The influence of boron to nitrogen ratio, strain rate and cooling rate on hot ductility of aluminium-killed, low carbon, boron microalloyed steel was investigated. Hot tensile testing was performed on steel samples reheated in argon to 1300°C, cooled at rates of 0.3, 1.2 and 3.0°Cs−1 to temperatures in the range 750–1050°C, and then strained to failure at initial strain rates of 1×10−4 or 1×10−3s−1. It was found that the steel with a B:N ratio of 0.19 showed deep hot ductility troughs for all tested conditions; the steel with a B:N ratio of 0.47 showed a deep ductility trough for a high cooling rate of 3.0°Cs−1 and the steel with a near-stoichiometric B:N ratio of 0.75 showed no ductility troughs for the tested conditions. The ductility troughs extended from ∼900°C (near the Ae3 temperature) to ∼1000 or 1050°C in the single-phase austenite region. The proposed mechanism of hot ductility improvement with increase in B:N ratio in these steels is that the B removes N from solution, thus reducing the strain-induced precipitation of AlN. Additionally, BN co-precipitates with sulphides, preventing precipitation of fine MnS, CuS and FeS, and forming large, complex precipitates that have no effect on hot ductility.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2008.04.026</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0921-5093
ispartof Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2008-10, Vol.494 (1-2), p.263-275
issn 0921-5093
1873-4936
language eng
recordid cdi_proquest_miscellaneous_34997811
source Elsevier ScienceDirect Journals
subjects Al-killed steel
Aluminium nitride
Applied sciences
Boron nitride
Elasticity. Plasticity
Exact sciences and technology
Hot ductility
Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology
Metals. Metallurgy
Sulphides
title Investigation of hot ductility in Al-killed boron steels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T17%3A54%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20hot%20ductility%20in%20Al-killed%20boron%20steels&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Chown,%20L.H.&rft.date=2008-10-25&rft.volume=494&rft.issue=1-2&rft.spage=263&rft.epage=275&rft.pages=263-275&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2008.04.026&rft_dat=%3Cproquest_cross%3E34997811%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34997811&rft_id=info:pmid/&rft_els_id=S0921509308004449&rfr_iscdi=true