Impact of orthorectification and spatial sampling on maximum NDVI composite data in mountain regions

Topography and accuracy of image geometric registration significantly affect the quality of satellite data, since pixels are displaced depending on surface elevation and viewing geometry. This effect should be corrected for through the process of accurate image navigation and orthorectification in o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing of environment 2009-12, Vol.113 (12), p.2701-2712
Hauptverfasser: Fontana, Fabio M.A., Trishchenko, Alexander P., Khlopenkov, Konstantin V., Luo, Yi, Wunderle, Stefan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Topography and accuracy of image geometric registration significantly affect the quality of satellite data, since pixels are displaced depending on surface elevation and viewing geometry. This effect should be corrected for through the process of accurate image navigation and orthorectification in order to meet the geolocation accuracy for systematic observations specified by the Global Climate Observing System (GCOS) requirements for satellite climate data records. We investigated the impact of orthorectification on the accuracy of maximum Normalized Difference Vegetation Index (NDVI) composite data for a mountain region in north-western Canada at various spatial resolutions (1 km, 4 km, 5 km, and 8 km). Data from AVHRR on board NOAA-11 (1989 and 1990) and NOAA-16 (2001, 2002, and 2003) processed using a system called CAPS (Canadian AVHRR Processing System) for the month of August were considered. Results demonstrate the significant impact of orthorectification on the quality of composite NDVI data in mountainous terrain. Differences between orthorectified and non-orthorectified NDVI composites (ΔNDVI) adopted both large positive and negative values, with the 1% and 99% percentiles of ΔNDVI at 1 km resolution spanning values between − 0.16 < ΔNDVI < 0.09. Differences were generally reduced to smaller numbers for coarser resolution data, but systematic positive biases for non-orthorectified composites were obtained at all spatial resolutions, ranging from 0.02 (1 km) to 0.004 (8 km). Analyzing the power spectra of maximum NDVI composites at 1 km resolution, large differences between orthorectified and non-orthorectified AVHRR data were identified at spatial scales between 4 km and 10 km. Validation of NOAA-16 AVHRR NDVI with MODIS NDVI composites revealed higher correlation coefficients (by up to 0.1) for orthorectified composites relative to the non-orthorectified case. Uncertainties due to the AVHRR Global Area Coverage (GAC) sampling scheme introduce an average positive bias of 0.02 ± 0.03 at maximum NDVI composite level that translates into an average relative bias of 10.6% ± 19.1 for sparsely vegetated mountain regions. This can at least partially explain the systematic average positive biases we observed relative to our results in AVHRR GAC-based composites from the Global Inventory Modeling and Mapping Studies (GIMMS) and Polar Pathfinder (PPF) datasets (0.19 and 0.05, respectively). With regard to the generation of AVHRR long-term climate data reco
ISSN:0034-4257
1879-0704
DOI:10.1016/j.rse.2009.08.008