A hyperbolic Lindstedt-Poincare method for homoclinic motion of a kind of strongly nonlinear autonomous oscillators

A hyperbolic Lindstedt-Poincare method is presented to determine the homoclinic solutions of a kind of nonlinear oscillators, in which critical value of the homoclinic bifurcation parameter can be determined. The generalized Lienard oscillator is studied in detail, and the present method's predictio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mechanica Sinica 2009-10, Vol.25 (5), p.721-729
Hauptverfasser: Chen, Y. Y., Chen, S. H., Sze, K. Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A hyperbolic Lindstedt-Poincare method is presented to determine the homoclinic solutions of a kind of nonlinear oscillators, in which critical value of the homoclinic bifurcation parameter can be determined. The generalized Lienard oscillator is studied in detail, and the present method's predictions are compared with those of Runge-Kutta method to illustrate its accuracy.
ISSN:0567-7718
1614-3116
DOI:10.1007/s10409-009-0276-0