Dislocation Transport and Line Length Increase in Averaged Descriptions of Dislocations
Crystal plasticity is the result of the motion and interaction of dislocations. There is, however, still a major gap between microscopic and mesoscopic simulations and continuum crystal plasticity models. Only recently a higher dimensional dislocation density tensor was defined which overcomes some...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Crystal plasticity is the result of the motion and interaction of dislocations. There is, however, still a major gap between microscopic and mesoscopic simulations and continuum crystal plasticity models. Only recently a higher dimensional dislocation density tensor was defined which overcomes some drawbacks of earlier dislocation density measures. The evolution equation for this tensor can be considered as a continuum version of dislocation dynamics. We use this evolution equation to develop evolution equations for the total dislocation density and an average curvature which together govern a faithful representation of the dislocation kinematics without having to use extra dimensions. |
---|---|
ISSN: | 0094-243X |
DOI: | 10.1063/1.3241258 |