Analysis of Conventional Spinning Process with Thermal Effects

The temperature effect is significant on the metal forming processes; for the quality of products and the tools life are extremely affected by it. This paper investigates the thermal effects on the conventional spinning process by the explicit finite element method with transient heat transfer condi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science forum 2008-01, Vol.594, p.187-192
Hauptverfasser: Wang, A Cheng, Liu, Chun Ho, Liang, Kuo Zoo, Hsu, Sheng En
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The temperature effect is significant on the metal forming processes; for the quality of products and the tools life are extremely affected by it. This paper investigates the thermal effects on the conventional spinning process by the explicit finite element method with transient heat transfer conditions. The governing equation is based on the updated Lagrangian formulation, the large deformation theory, and the principle of the conservation of energy. The energy terms in this study include the plastic strain energy, the frictional sliding energy, and the heat transfer energy. The energy and temperature distribution of the circular sheet, on the varying boundary conditions of the heat transformation, are discussed in detail. Furthermore, the various mesh types are examined in the simulations. With the application of the mass scaling factor technique, the full history of spinning process is performed successfully. The main benefit of the proposed model will save the tremendous costs in the die designing and the experimental works. The parameters and techniques using in the numerical model are helpful for the design of forming process and the coupling thermal-mechanical analysis.
ISSN:0255-5476
1662-9752
1662-9752
DOI:10.4028/www.scientific.net/MSF.594.187