Belief revision and information fusion on optimum entropy
This article presents new methods for probabilistic belief revision and information fusion. By making use of the information theoretical principles of optimum entropy (ME principles), we define a generalized revision operator that aims at simulating the human learning of lessons, and we introduce a...
Gespeichert in:
Veröffentlicht in: | International journal of intelligent systems 2004-09, Vol.19 (9), p.837-857 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This article presents new methods for probabilistic belief revision and information fusion. By making use of the information theoretical principles of optimum entropy (ME principles), we define a generalized revision operator that aims at simulating the human learning of lessons, and we introduce a fusion operator that handles probabilistic information faithfully. This ME‐fusion operator satisfies basic demands, such as commutativity and the Pareto principle. A detailed analysis shows it to merge the corresponding epistemic states. Furthermore, it induces a numerical fusion operator that computes the information theoretical mean of probabilities. © 2004 Wiley Periodicals, Inc. Int J Int Syst 19: 837–857, 2004. |
---|---|
ISSN: | 0884-8173 1098-111X |
DOI: | 10.1002/int.20027 |