Vortex ring-like structures in gasoline fuel sprays under cold-start conditions

Abstract A phenomenological study of vortex ring-like structures in gasoline fuel sprays is presented for two types of production fuel injectors: a low-pressure, port fuel injector (PFI) and a high-pressure atomizer that injects fuel directly into an engine combustion chamber (G-DI). High-speed phot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of engine research 2009-08, Vol.10 (4), p.195-214
Hauptverfasser: Begg, S, Kaplanski, F, Sazhin, S, Hindle, M, Heikal, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract A phenomenological study of vortex ring-like structures in gasoline fuel sprays is presented for two types of production fuel injectors: a low-pressure, port fuel injector (PFI) and a high-pressure atomizer that injects fuel directly into an engine combustion chamber (G-DI). High-speed photography and phase Doppler anemometry (PDA) were used to study the fuel sprays. In general, each spray was seen to comprise three distinct periods: an initial, unsteady phase; a quasi-steady injection phase; and an exponential trailing phase. For both injectors, vortex ring-like structures could be clearly traced in the tail of the sprays. The location of the region of maximal vorticity of the droplet and gas mixture was used to calculate the temporal evolution of the radial and axial components of the translational velocity of the vortex ring-like structures. The radial components of this velocity remained close to zero in both cases. The experimental results were used to evaluate the robustness of previously developed models of laminar and turbulent vortex rings. The normalized time, , and normalized axial velocity, , were introduced, where t init is the time of initial observation of vortex ring-like structures. The time dependence of on was approximated as and for the PFI and G-DI sprays respectively. The G-DI spray compared favourably with the analytical vortex ring model, predicting , in the limit of long times, where α = 3/2 in the laminar case and α = 3/4 when the effects of turbulence are taken into account. The results for the PFI spray do not seem to be compatible with the predictions of the available theoretical models.
ISSN:1468-0874
2041-3149
DOI:10.1243/14680874JER02809